首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Spinel Li4Mn5O12 was prepared by a sol–gel method. The manganese oxide and activated carbon composite (MnO2-AC) were prepared by a method in which KMnO4 was reduced by activated carbon (AC). The products were characterized by XRD and FTIR. The hybrid supercapacitor was fabricated with Li4Mn5O12 and MnO2-AC, which were used as materials of the two electrodes. The pseudocapacitance performance of the Li4Mn5O12/MnO2-AC hybrid supercapacitor was studied in various aqueous electrolytes. Electrochemical properties of the Li4Mn5O12/MnO2-AC hybrid supercapacitor were studied by using cyclic voltammetry, electrochemical impedance measurement, and galvanostatic charge/discharge tests. The results show that the hybrid supercapacitor has electrochemical capacitance performance. The charge/discharge test showed that the specific capacitance of 51.3 F g−1 was obtained within potential range of 0–1.3 V at a charge/discharge current density of 100 mA g−1 in 1 mol L−1 Li2SO4 solution. The charge/discharge mechanism of Li4Mn5O12 and MnO2-AC was discussed.  相似文献   

2.
One of the most promising anode materials for Li-ion batteries, Li4Ti5O12, has attracted attention because it is a zero-strain Li insertion host having a stable insertion potential. In this study, we suggest two different synthetic processes to prepare Li4Ti5O12 using anatase TiO2 nanoprecursors. TiO2 powders, which have extraordinarily large surface areas of more than 250 m2 g-1, were initially prepared through the urea-forced hydrolysis/precipitation route below 100°C. For the synthesis of Li4Ti5O12, LiOH and Li2CO3 were added to TiO2 solutions prepared in water and ethanol media, respectively. The powders were subsequently dried and calcined at various temperatures. The phase and morphological transitions from TiO2 to Li4Ti5O12 were characterized using X-ray powder diffraction and transmission electron microscopy. The electrochemical performance of nanosized Li4Ti5O12 was evaluated in detail by cyclic voltammetry and galvanostatic cycling. Furthermore, the high-rate performance and long-term cycle stability of Li4Ti5O12 anodes for use in Li-ion batteries were discussed.  相似文献   

3.
A multifunctional fluorescent probe BHN-Fe3O4@SiO2 nanostructure for Fe3+ was designed and developed. It has a good selective response to Fe3+ with fluorescence quenching and can be recycled using an external magnetic field. With adding EDTA (2.5?×?10?5 M) to the consequent product Fe3+-BHN-Fe3O4@SiO2, Fe3+ can be removed from the complex, and its fluorescence probing ability recovers, which means that this constituted on-off type fluorescence probe could be reversed and reused. At the same time, the probe has been successfully applied for quantitatively detecting Fe3+ in a linear mode with a low limit of detection 1.25?×?10?8 M. Furthermore, the BHN-Fe3O4@SiO2 nanostructure probe is successfully used to detect Fe3+ in living HeLa cells, which shows its great potential in bioimaging detection.  相似文献   

4.
We investigated the optical characteristics of strontium aluminate phosphors excited by near ultraviolet light emitting diodes (UV LEDs). For UV LEDs applications, strontium aluminates doped with europium were prepared at high temperature in a weakly reductive atmosphere. The effect of boric acid as a flux was considered. The excitation and emission spectra of these phosphors indicated that all of them have a broad band and that the main emission peaks, situated at around 490 nm for 4SrO·7Al2O3 : Eu and 520 nm for SrOAl2O3 : Eu, are both due to the 4f65d1 → 4f7 transition of Eu2+. The typical brightness of a phosphor-converted LED, which was made with synthesized phosphors and a blue LED, was 712 mcd. By using the synthesized phosphors, phosphor-converted white LEDs could be well fabricated with good optical characteristics. In this case, color coordinates could be controlled from x = 0.1373 and y = 0.4635 to x = 0.2386 and y = 0.6066 at 20 mA and 3.69 V.  相似文献   

5.
Positive electrode material LiNi1/2Mn1/2O2 was synthesized via the carbonate co-precipitation method and the hydroxide precipitation route to study the effects of the precursor on its structural and electrochemical properties. The results of X-ray diffraction and Rietveld refinement show that the carbonate precursor of Ni2+ and Mn2+ exhibits one phase at a pH of 8.5, while the hydroxide deposit separates into Ni(OH)2 and Mn(OH)2 phases under the same experimental conditions. LiNi1/2Mn1/2O2 material prepared from the hydroxide precursor shows 8.9% Li/Ni exchange and a large capacity loss of 11.3% in the first 10 cycles. By contrast, more uniform distribution of transition metal ions and stable Mn2+ in the carbonate precursor contribute to only 7.8% Li/Ni disorder in the obtained LiNi1/2Mn1/2O2, which delivers a reversible capacity of about 182 mAh g−1 at a current rate of 14 mA g−1 between 2.5 and 4.8 V.  相似文献   

6.
The ramsdellite-type phases crystallizing in the Li2O-Fe2O3-TiO2 system in the course of synthesis in gaseous media at different oxygen partial pressures are studied. Solid solutions based on the ramsdellite structure with the composition Li2Ti3?xFe x O7 ? δ (0 ≤ x ≤ 0.7) are prepared in an oxidizing medium (PO2 = 1 atm) for the first time. Analysis of the results obtained by electron paramagnetic resonance and Mossbauer spectroscopy revealed that, in these solid solutions, all iron ions are in the oxidation state Fe+3.  相似文献   

7.
Recent studies have brought out many phosphors like Eu2+, Dy3+-doped alkaline earth aluminates. The trivalent Dy3+ ions as co-dopants greatly enhance the duration and intensity of persistent luminescence. These phosphors show excellent properties, such as high quantum efficiency, long persistence of phosphorescence, good stability and suitable color emission.In this work the effect of Al/Sr ratio on the afterglow and phosphorescence decay properties of Eu2+ and Dy3+ co-activated strontium aluminates synthesized by a solid-state process has been investigated. The luminescence properties of samples were investigated by means of excitation spectra, emission spectra and X-ray diffraction analysis.A variety of strontium aluminates, such as SrAl2O4, Sr4Al2O7, Sr3Al2O6, Sr3Al2(Eu, Dy, Y)O7.5, Al5(Eu, Dy, Y)O12, Sr4Al14O25, SrAl12O19 and (Eu, Dy, Y)AlO3 have been identified in the samples prepared from starting precursors with Al/Sr mole ratios ranging from 0.44 to 5. The afterglow decay rate was found to be the fastest for sample with Al/Sr ratio of 4.18, in which SrAl4O7 phase was dominant. The afterglow decay rate for phosphor with Al/Sr ratio of 2, in which SrAl2O4 phase was dominant, was detected to be slow. Moreover, the emission spectra of the samples shift to yellow-green long wavelength from bluish-green-ultraviolet short wave with the increase of Al/Sr ratios resulting from the change in the composition.  相似文献   

8.
The Li-rich layered cathode material, Li[Ni0.2Li0.2Mn0.6]O2, was synthesized via a “mixed oxalate” method, and its structural and electrochemical properties were compared with the same material synthesized by the sol–gel method. X-ray diffraction (XRD) shows that the synthesized powders have a layered O3–LiCoO2-type structure with the R-3m symmetry. X-ray photoelectron spectroscopy (XPS) indicates that in the above material, Ni and Mn exist in the oxidation states of +2 and +4, respectively. The layered material exhibits an excellent electrochemical performance. Its discharge capacity increases gradually from the initial value of 228 mA hg−1 to a stable capacity of over 260 mA hg−1 after the 10th cycle. It delivers a larger capacity of 258 mA hg−1 at the 30th cycle. The dQ/dV curves suggest that the increasing capacity results from the redox-reaction of Mn4+/Mn3+.  相似文献   

9.
Triply and doubly charged states of europium are revealed by 151Eu Mössbauer spectroscopy in the structure of glasses of the composition (mol %) 19.5Al2O3, 31.5SiO2, 26.5MnO, and 22.5Eu2O3. The isomer shifts in the Mössbauer spectra of Eu3+ and Eu2+ ions in the structure of glasses differ from the isomer shifts in the spectra of the Eu2O3 and EuO compounds. This difference is explained by the fact that the electron density at 151Eu nuclei is affected by the manganese and aluminum atoms, which are not bound directly to the europium atoms. The broadening of the spectra of the Eu2+ ions in glasses is caused by the nonuniform isomer shift.  相似文献   

10.
A new compound of (Rb,K)2Cu3(P2O7)2 is obtained by high-temperature reactions from a mixture of RbNO3, KNO3, Cu(NO3)2, and (NH4)4P2O7. The crystal structure was solved by direct methods and refined to R 1 = 0.056 for 5022 independent reflections. The compound belongs to a rhombic crystal system, P212121, Z = 8, a = 9.9410(7) Å, b = 13.4754(6) Å, c = 18.6353 (3) Å, and R = 0.056. The basis of the structure is a complex copper-phosphate skeleton of the composition of [Cu3(P2O7)2]2–, which can be regarded as consisting of two types of heteropolyhedral layers parallel to the (001) plane. The layers are alternated with each other, forming a frame, in the cavities of which the positions of alkali cations are located, statistically populated with K+ and Rb+ ions. Based on the refined populations of the positions of alkali cations, an exact chemical formula of the compound can be written as Rb1.28K0.72Cu3(P2O7)2. The compound is the most complex among those known to this day of the composition of A2 IB3 II(P2O7)2 (A = Li, Na, K, Rb, or Cs; B = Ni, Cu, or Zn).  相似文献   

11.
The polycrystalline Eu2+ and Dy3+ codoped strontium aluminates SrAl2O4: Eu2+,Dy3+ were prepared by a solid-state reaction. The UV-excited photoluminescence, persistent luminescence, and thermoluminescence of the SrAl2O4: Eu2+,Dy3+ phosphors with different compositions and ion doping was studied and compared. The results showed that the Eu2+ ion doped in SrAl2O4: Eu2+,Dy3+ phosphors is not only the UV-excited luminescent center but also the persistent luminescent center. The Dy3+ ion introduced into SrAl2O4: Eu2+ crystal matrix can hardly yield any luminescence under UV excitation but acts as an electron trap with a suitable depth for persistent luminescence. The Dy3+ codoping would effectively enhance the persistent luminescence and thermoluminescence. Different codoping RE 3+ ions have a different effect on persistent luminescence. Only the RE 3+ ions (for example, Dy3+ and Nd3+), which have suitable optical electronegativity, can form suitable electron traps and effectively improve the persistent luminescence of SrAl2O4: Eu2+. Based on the above observations, a persistent luminescence mechanism, electron transfer model, was proposed and illustrated. The text was submitted by the authors in English.  相似文献   

12.
SrAl2O4: (Eu2+, Dy3+) phosphor was prepared by solid state reaction. B2O5 as a flux was added in SrAl2O4:(Eu 2+, Dy3+) in order to accelerate a solid state reaction. In this paper, the effects of B2O3 on the crystal structure and the phosphorescent properties of the material have been evaluated. The synthesized phosphor exhibited a broad band emission spectrum peaking at 520 nm, and the spectrum peak showed little effect by the B2O3 contents. The maximum afterglow intensity of the SrAl2O4: (Eu2+, Dy3+) phosphor was obtained at the B2O3 content of 5%. Adding the B2O3 caused uniform distortion to the crystal structure of the phosphor and resulted in reducing the lengths of a and c axes and Β angle of the SrAl2O4 crystal. The uniform distortion was accompanied with crystal defects which can trap the holes generated by the excitation of Eu2+ ions. The afterglow characteristic of the SrAl2O4: (Eu2+, Dy3+) phosphor was thus enhanced.  相似文献   

13.
The effect of Li2O on the crystallization properties of CaO-Al2O3-SiO2-Li2O-Ce2O3 slags was investigated. With increasing the Li2O content, LiAlO2 and CaCeAlO4 were the main crystalline phases. LiAlO2 formed for the charge compensating of Li+ ions to [AlO45?]-tetrahedrons, and CaCeAlO4 formed as a result of the charge balance of Ce3+ ions, Ca2+ ions, and [AlO69?]-octahedrons. Increasing the content of Li2O to 10%, the crystallization temperature was the highest, and the incubation time was the shortest. The crystallization ability was strong due to the three factors of strengthening the interaction between ions and ion groups, decreasing the polymerization degree, and increasing the melting temperature. Further increasing the content of Li2O, the crystallization performance was obviously suppressed, because the melting temperature and the force between the cations and the anion groups decreased.  相似文献   

14.
《Ceramics International》2023,49(7):10273-10279
The photoluminescence behavior of inorganic phosphors is generally influenced by thermal stability, which determines the luminescence efficiency of the corresponding devices. Here, a series of Eu2+, Mn2+ co-doped LiAl5O8 blue-green-emitting phosphors with thermal robust are successfully fabricated. The concentration-dependent emission spectra and the decay curves of the as-obtained LiAl5O8: Eu2+, Mn2+ samples manifest the occurrence of the energy transfer from Eu2+ to Mn2+ ions via dipole-dipole interaction, and the corresponding emitted colors are gradually modulated from blue to green under the excitation of 310 nm. Moreover, the zero-thermal-quenching luminescence is observed when the operation temperature is up to 423 K, which is attributed to the energy release from the trapping centers to emitting centers (Eu2+ and Mn2+) at high temperature. Furthermore, a warm white light-emitting diodes (WLEDs) device with correlated color temperature of 5061 K, a color rendering index of 80.6 and long-term stability is fabricated by combining UV LED chip (λex = 310 nm), as-obtained LiAl5O8: Eu2+, Mn2+ phosphor, commercially available red phosphor and green phosphor. These results prove the potential application of the as-obtained LiAl5O8: Eu2+, Mn2+ phosphor for UV-pumped WLEDs devices.  相似文献   

15.
Results of the characterization of six Co-based Fischer–Tropsch (FT) catalysts, with 15% Co loading and supported on SiO2 and Al2O3, are presented. Room temperature X-ray diffraction (XRD), temperature and magnetic field (H) variation of the magnetization (M), and low-temperature (5 K) electron magnetic resonance (EMR) are used for determining the electronic states (Co0, CoO, Co3O4, Co2+) of cobalt. Performance of these catalysts for FT synthesis is tested at reaction temperature of 240 °C and pressure of 20 bars. Under these conditions, 15% Co/SiO2 catalysts yield higher CO and syngas conversions with higher methane selectivity than 15% Co/Al2O3 catalysts. Conversely the Al2O3 supported catalysts gave much higher selectivity towards olefins than Co/SiO2. These results yield the correlation that the presence of Co3O4 yield higher methane selectivity whereas the presence of Co2+ species yields lower methane selectivity but higher olefin selectivity. The activities and selectivities are found to be stable for 55 h on-stream.  相似文献   

16.
Polycrystalline quasi-crystals of icosahedral Al70Cu20Fe10(i-Al70Cu20Fe10) were prepared by thermal explosion (TE) of mechanically activated mixture of Al, Cu, Fe powders doped with AlCu. The effect of AlCu dopant was studied by XRD, field emission scanning electron (FESEM), optical microscopy (OM), atomic emission spectroscopy (AES), and energy-dispersive X-ray microanalysis (EDX). The synthesized i-Al70Cu20Fe10 and intermetallics (Al3Fe, Al2Cu) show soft ferromagnetic and paramagnetic properties, respectively.   相似文献   

17.
The EPR spectra of compounds in the LaAlO3-La0.67Sr0.33Mn y O3 system at a frequency of 9.4 GHz have been investigated at the temperatures T = 77 and 300 K as a function of the manganese concentration y (y = 0.015, 0.030, 0.080). It has been revealed that, in the paramagnetic state at y = 0.015, there exist isolated Mn2+ and Mn4+ ions, which has been confirmed by simulating the EPR spectra. The parameters of the EPR spectra have been determined. The effective magnetic moments μeff of the Mn2+ and Mn4+ ions have been calculated from the EPR spectra. It has been demonstrated that an increase in the Mn concentration leads to a decrease in the number of isolated ions and to the formation of new spin clusters. This manifests itself in the predominance of a broad line with weak traces of the hyperfine structure due to the isolated manganese ions.  相似文献   

18.
Stable magnetic nanofluids containing Fe3O4@Polypyrrole (PPy) nanoparticles (NPs) were prepared by using a facile and novel method, in which one-pot route was used. FeCl3·6H2O was applied as the iron source, and the oxidizing agent to produce PPy. Trisodium citrate (Na3cit) was used as the reducing reagent to form Fe3O4 NPs. The as-prepared nanofluid can keep long-term stability. The Fe3O4@PPy NPs can still keep dispersing well after the nanofluid has been standing for 1 month and no sedimentation is found. The polymerization reaction of the pyrrole monomers took place with Fe3+ ions as the initiator, in which these Fe3+ ions remained in the solution adsorbed on the surface of the Fe3O4 NPs. Thus, the core-shell NPs of Fe3O4@PPy were obtained. The particle size of the as-prepared Fe3O4@PPy can be easily controlled from 7 to 30 nm by the polymerization reaction of the pyrrole monomers. The steric stabilization and weight of the NPs affect the stability of the nanofluids. The as-prepared Fe3O4@PPy NPs exhibit superparamagnetic behavior.  相似文献   

19.
Two methods were used to obtain a catalytically active oxide coating on the surface of titanium for the catalytic afterburning of diesel soot: plasma electrochemical formation of an oxide film on the surface of titanium and extraction pyrolytic deposition of the Li2Cu2(MoO4)3 compound. The Li2Cu2(MoO4)3/TiO2 + SiO2/Ti compositions synthesized by the single-step extraction pyrolytic treatment of the oxidized surface of titanium ensured a high burning rate of soot of ∼300°C. The subsequent deposition of Li2Cu2(MoO4)3 lowers the activity of the catalyst, due probably to the growth of molybdate phase crystallites and the filling of open oxide film pores. Double lithium-copper molybdate is able to reduce appreciably the concentration of CO in the oxidation products of soot. The advantages of these methods are the possibility of forming high-cohesion durable coatings on surfaces of any complexity, the simplicity of their implementation, and high productivity and low cost. The obtained results can be recommended for use in developing methods for creating composite coatings on catalytic soot filters.  相似文献   

20.
Two types of CeO2-modified Ni/Al2O3 catalysts were prepared by a consecutive impregnation method with different sequences in the impregnation of Ni and CeO2, and their performance in autothermal reforming (ATR) of isooctane was investigated. Catalysts prepared by adding CeO2 prior to the addition of Ni, Ni/CeO2-Al2O3, produced larger amounts of hydrogen than those obtained using catalysts prepared by adding the two components in an opposite sequence, Ni-CeO2/Al2O3. The results of H2 chemisorption and temperature-programmed reduction revealed that added CeO2 increased the dispersion of the Ni species on Al2O3 and suppressed the formation of NiAl2O4 in the catalyst such that large amounts of Ni species were present as NiO, the active species for the ATR. The elemental and thermogravimetric analyses of deactivated catalysts indicated that Ni/CeO2-Al2O3, which showed a longer lifetime than Ni-CeO2/Al2O3, contained lesser amounts and different types of coke on the surface.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号