首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A new polymer-ceramic composite was prepared using PTFE and low loss Sr2ZnSi2O7. The dielectric properties of the composite were studied in the microwave and radiofrequency ranges. The relative permittivity (εr) and dielectric loss (tan δ) increased with the filler loading from 0.10 to 0.50 volume fractions (vf). The observed values of εr, thermal conductivity and coefficient of thermal expansion (CTE) were compared with the corresponding theoretical predictions. The ability of the composite towards moisture absorption resistance was studied as a function of filler loading. It was also found that the variation of εr was less than 2% in the temperature range 25–90 °C, at 1 MHz. For a filler content of 0.50 vf, the PTFE/Sr2ZnSi2O7 composite exhibited εr = 4.4, tan δ = 0.003 (at 4–6 GHz), CTE = 38.3 ppm/°C, thermal conductivity = 2.1 W/mK and moisture absorption = 0.09 wt%.  相似文献   

2.
Calcium silicate ceramic coatings have received considerable attention in recent years due to their excellent bioactivity and bonding strength. However, their high dissolution rates limit their practical applications. In this study, zinc incorporated calcium silicate based ceramic Ca2ZnSi2O7 coating was prepared on Ti-6Al-4V substrate via plasma spraying technology aiming to achieve higher chemical stability and additional antibacterial activity. Chemical stability of the coating was assessed by monitoring mass loss and ion release of the coating after immersion in the Tris–HCl buffer solution and examining pH value variation of the solution. Results showed that the chemical stability of zinc incorporated coating was improved significantly. Antimicrobial activity of the Ca2ZnSi2O7 coating was evaluated, and it was found that the coating exhibited 93% antibacterial ratio against Staphylococcus aureus. In addition, in vitro bioactivity and cytocompatibility were confirmed for the Ca2ZnSi2O7 coating by simulated body fluid test, MC3T3-E1 cells adhesion investigation and cytotoxicity assay.  相似文献   

3.
Polycrystalline sample of Ba3Sr2DyTi3V7O30 was prepared at 950°C using a high-temperature solid-state reaction technique. X-ray structural analysis indicated the formation of a single-phase orthorhombic structure with lattice parameters: a = 12·2719 (39) Å, b = 8·9715(39) Å and c = 19·7812(39) Å. Microstructural study showed densely packed uniform distribution of grains over the surface of the sample. The a.c. impedance plots were used as tools to analyse the electrical response of the sample as a function of frequency at different temperatures (30–500°C). These plots revealed the presence of grain boundary effect, from 200·C onwards. Complex impedance analysis showed non-Debye type of dielectric relaxation. The Nyquist plots showed the negative temperature coefficient of resistance character of Ba3Sr2DyTi3V7O30. A hopping mechanism of electrical transport processes in the system is evident from the modulus analysis. The activation energy of the compound (calculated both from loss and modulus spectrum) is the same, and hence the relaxation process may be attributed to the same type of charge carrier.  相似文献   

4.
Dense Ca(Zn1/3Nb2/3)O3/NiZn ferrite composites with homogeneously fine microstructures were prepared through conventional solid-state method. The powder XRD patterns confirm the coexistence of the two phases. The dielectric properties in the low frequency range (100 Hz–1 MHz) follow the rule of Maxwell–Wagner interfacial polarization. The dielectric and magnetic properties in the high frequency range (10 MHz–1 GHz) are also reported. The results show that this kind of magnetic–dielectric composites could be used in high-frequency communications for the capacitor-inductor integrating devices such as electromagnetic interference filters and antennas.  相似文献   

5.
The microwave dielectric properties and the microstructures of Sm(Co1/2Ti1/2)O3 ceramics with B2O3 additions (0.25 and 0.5 wt%) prepared by conventional solid-state route have been investigated. The prepared Sm(Co1/2Ti1/2)O3 exhibited a mixture of Co and Ti showing 1:1 order in the B-site. Doping with B2O3 (up to 0.5 wt%) can effectively promote the densification of Sm(Co1/2Ti1/2)O3 ceramics with low sintering temperature. It is found that Sm(Co1/2Ti1/2)O3 ceramics can be sintered at 1,260 °C due to the grain boundary phase effect of B2O3 addition. At 1,290 °C, Sm(Co1/2Ti1/2)O3 ceramics with 0.5 wt% B2O3 addition possess a dielectric constant (ε r) of 27.7, a Q × f value of 33,600 (at 9 GHz) and a temperature coefficient of resonant frequency (τf) of −11.4 ppm/ °C. The B2O3-doped Sm(Co1/2Ti1/2)O3 ceramics can find applications in microwave devices requiring low sintering temperature.  相似文献   

6.
3Y-TZP/Al2O3 composites were pressureless sintered with the addition of TiO2-MnO2 and CaO-Al2O3-SiO2 glass. The densification, microstructure and mechanical properties of the composites were investigated. It was found that the composites could be densified at a temperature as low as 1400^C by liquid phase sintering. The majority of the grain sizes for both Al2O3 and ZrO2 were below 1 m because of the lower sintering temperature. A bending strength of 934 ± 28 MPa and fracture toughness of 7.82 ± 0.19 MPam1/2 were obtained for 3Y-TZP/Al2O3 (20 vol%) composite. Transformation toughening is considered the responsible toughening mechanism.  相似文献   

7.
Preparation of epoxy/SiO2-TiO2 composites is investigated in this paper. The products are characterized by FT-IR spectroscopy. Results of FT-IR spectroscopy and atom force microscope (AFM) demonstrated that epoxy chains have been covalently bonded to the surface of the SiO2-TiO2 particles. The particles sized of SiO2-TiO2 are about 20–50 nm, which characterized by AFM. The properties of composites such as impact strength, flexural strength, tensile strength and ring-on-block wear are also investigated. Dry sliding wear tests showed that the SiO2-TiO2 particles could improve the wear resistance of the epoxy matrix even though the content of the SiO2-TiO2 particles was at a relatively low level (1.95–2.65 wt%). This makes it possible to develop novel type of epoxy-based materials with improved wear resistance for various applications. The worn surface was observed by scanning electron microscopy (SEM), and mechanisms for the improvement are discussed in this paper  相似文献   

8.
The Na2ZnP2O7 compound was obtained by the conventional solid-state reaction. The sample was characterized by X-ray powder diffraction, infrared analysis and electrical impedance spectroscopy. The impedance plots show semicircle arcs at different temperatures and an electrical equivalent circuit has been proposed to explain the impedance results. The circuits consist of the parallel combination of bulk resistance R p and constant phase elements CPE. Dielectric data were analyzed using complex electrical modulus M* for the sample at various temperatures. The frequency dependence of the conductivity is interpreted in terms of Jonscher’s law. The conductivity σ d.c. follows the Arrhenius relation. The near value of activation energies obtained from the analysis of M″ and conductivity data confirms that the transport is through ion hopping mechanism, dominated by the motion of the Na+ ions in the structure of the investigated materials.  相似文献   

9.
Oxides of the type, Ba3-xSrxZnNb2O9 (0 ≤x ≤3), were synthesized by the solid state route. Oxides calcined at 1000°C show single cubic phase for all the compositions. The cubic lattice parameter (a) decreases with increase in Sr concentration from 4.0938(2) forx = 0 to 4.0067(2) forx = 3. Scanning electron micrographs show maximum grain size for thex = 1 composition (∼ 2 μm) at 1200°C. Disks sintered at 1200°C show dielectric constant variation between 28 and 40 (at 500 kHz) for different values of x with the maximum dielectric constant atx = 1.  相似文献   

10.
We have studied the compounds K2MgV2O7 and M2CaV2O7 with M = K, Rb, and Cs. These vanadates melt incongruently in the range 635–717°C. Cooling their decomposition products to room temperature leads to the formation of nonequilibrium phase assemblages characteristic of the corresponding oxide systems. The compounds offer broadband photo- and radioluminescence with an essentially white (to the human eye) emission spectrum. A model is proposed for luminescence centers in the vanadates, which involves the formation of defects in vanadium-oxygen groups, and an energy level diagram of the emission centers is constructed in the form of configuration curves in the harmonic oscillator approximation. The luminescent properties of these compounds suggest that they can be used as basic components of cathodo- and roentgenoluminescent screens and white-light-emitting diodes with improved color performance.  相似文献   

11.
Ceramic powders of the Pb(Zn1/3Ta2/3)O3-introduced BaTiO3–PbTiO3 system were prepared using a B-site precursor method. Perovskite formation tendencies of the system compositions were determined by X-ray diffraction. Weak-field low-frequency dielectric properties of the sintered ceramics were investigated. Dielectric constant spectra were further analyzed in terms of diffuseness. Internal microstructures of the ceramics were also examined.  相似文献   

12.
Platelike Li1 ? x Na x Cu2O2 single crystals up to 2 × 10 × 10 mm in dimensions have been grown by slowly cooling (1 ? x)Li2CO3·xNa2O2·4CuO melts in alundum crucibles in air. Li1 ? x Na x Cu2O2 solid solutions in the LiCu2O2-NaCu2O2 system have been shown to exist in the composition range 0.78 < x < 1. The temperature stability ranges of NaCu2O2 and LiCu2O2 are 780–930 and 890–1050°C, respectively. The Mössbauer spectra and electrical conductivity of the crystals have been measured.  相似文献   

13.
Lead-free perovskite Ba(Sb1/2Nb1/2)O3 was prepared by conventional ceramic fabrication technique at 1200 °C/5 h in air atmosphere. The crystal symmetry, space group and unit cell dimensions were determined from the experimental results using FullProf software whereas crystallite size and lattice strain were estimated from Williamson–Hall approach. XRD analysis of the compound indicated the formation of a single-phase monoclinic structure with the space group P2/m. EDAX and SEM studies were carried out to evaluate the quality and purity of the compound. Dielectric study revealed the frequency-dependent dielectric anomaly. To find a correlation between the response of the real system and idealized model circuit composed of discrete electrical components, the model fittings were presented using the impedance data. Complex impedance analyses suggested the dielectric relaxation to be of non-Debye type. The correlated barrier hopping model was employed to successfully explain the mechanism of charge transport in Ba(Sb1/2Nb1/2)O3. The ac conductivity data were used to evaluate the density of states at Fermi level, minimum hopping length and apparent activation energy of the compound.  相似文献   

14.
Semiconducting glasses of the Fe2O3-Bi2O3-K2B4O7 system were prepared by the press-quenching method and their dc conductivity in the temperature range 223–393 K was measured. The glass transition temperature values (Tg) of the present glasses were larger than those of tellurite glasses. This indicates a higher thermal stability of the glass in the present system. The density for these glasses was consistent with the ionic size, atomic weight and amount of different elements in the glasses. Mössbauer results revealed that the relative fraction of Fe increases with increasing Fe2O3 content. Electrical conductivity showed a similar composition dependency as the fraction of Fe. The glasses had conductivities ranging from 10 to 10 Scm at temperatures from 223 to 393 K. Electrical conduction of the glasses was confirmed to be due to non-adiabatic small polaron hopping and the conduction was primarily determined by hopping carrier mobility.  相似文献   

15.
Nb2O5-modified PZT/ZnO nanowhisker (denoted as PZT/ZnOw–Nb2O5) piezoelectric composites were prepared by a solid state sintering technique. Effects of Nb2O5 addition on the microstructure, electrical, and mechanical properties of the PZT/ZnOw composites were investigated. With increasing Nb2O5 content, the grain size of the composites was reduced and the fracture mode changed from intergranular to intragranular gradually. Compared with the PZT/ZnOw composites, the dielectric, piezoelectric, and ferroelectric properties of the PZT/ZnOw–Nb2O5 composites were improved significantly, while mechanical properties were enhanced slightly. The optimum electrical and mechanical properties were achieved for the PZT/ZnOw composites modified with 0.75 wt% Nb2O5 sintered at 1150 °C, with dielectric permittivity εr, piezoelectric coefficient d 33, planar electromechanical coupling k p, remnant polarization P r, fracture toughness K IC, and flexural strength σf being on the order of 4930, 600 pC/N, 0.63, 29.2 μC/cm2, 1.56 MPa m1/2 and 130 MPa, respectively. The Nb2O5-modified PZT/ZnOw piezoelectric composites, with comparable electrical properties and improved mechanical properties than those of commercial PZT-5H ceramics, are promising candidates for further applications.  相似文献   

16.
We report the results of magnetic, magnetocaloric properties, and critical behavior investigation of the double-layered perovskite manganite La1.4(Sr0.95Ca0.05)1.6Mn2O7. The compounds exhibits a paramagnetic (PM) to ferromagnetic (FM) transition at the Curie temperature T C = 248 K, a Neel transition at T N = 180 K, and a spin glass behavior below 150 K. To probe the magnetic interactions responsible for the magnetic transitions, we performed a critical exponent analysis in the vicinity of the FM–PM transition range. Magnetic entropy change (??S M) was estimated from isothermal magnetization data. The critical exponents β and γ, determined by analyzing the Arrott plots, are found to be T C = 248 K, β = 0.594, γ = 1.048, and δ = 2.764. These values for the critical exponents are close to the mean-field values. In order to estimate the spontaneous magnetization M S(T) at a given temperature, we use a process based on the analysis, in the mean-field theory, of the magnetic entropy change (??S M) versus the magnetization data. An excellent agreement is found between the spontaneous magnetization determined from the entropy change [(??S M) vs. M 2] and the classical extrapolation from the Arrott curves (µ0H/M vs. M 2), thus confirming that the magnetic entropy is a valid approach to estimate the spontaneous magnetization in this system and in other compounds as well.  相似文献   

17.
The phase equilibria in the ternary system La2O3-Nb2O5-Nb have been studied at subsolidus temperatures in vacuum (6.65 × 10?3 Pa), and the temperature stability limits of LaNb7O12 have been determined in vacuum and during heating in air.  相似文献   

18.
The polycrystalline sample of CaBa4SmTi3Nb7O30, a member of tungsten bronze family, was prepared by solid-state reaction method. X-ray diffraction analysis shows the formation of single-phase compound with an orthorhombic structure at room temperature. Scanning electron micrograph of the material shows uniform distribution of grains. Detailed studies of dielectric properties of the compound as a function of temperature at different frequencies suggest that the compound has a dielectric anomaly of ferroelectric to paraelectric type at 198°C, and exhibits non-relaxor kind of diffuse phase transition. The ferroelectric nature of the compound has been confirmed by recording polarization-electric field hysteresis loop. Piezoelectric and pyroelectric studies of the compound have been discussed in this paper. Electrical properties of the material have been analyzed using complex impedance technique. The Nyquist plots manifest the contribution of grain boundaries (at higher temperature), in addition to granular contribution (at all temperatures) to the overall impedance. The temperature dependence of dc conductivity suggests that the compound has negative temperature coefficient of resistance (NTCR) behaviour. The frequency dependence of ac conductivity is found to obey Jonscher’s universal power law. The observed properties have been compared with calcium free Ba5SmTi3Nb7O30 compound.  相似文献   

19.
Y2O3 + Nd2O3 co-stabilized ZrO2-based composites with 40 vol% WC were fully densified by pulsed electric current sintering (PECS) at 1350 °C and 1450 °C. The influence of the PECS temperature and Nd2O3 co-stabilizer content on the densification, hardness, fracture toughness and bending strength of the composites was investigated. The best combination of properties was obtained for a 1 mol% Y2O3 and 0.75 mol% Nd2O3 co-stabilized composite densified for 2 min at 1450 °C under a pressure of 62 MPa, resulting in a hardness of 15.5 ± 0.2 GPa, an excellent toughness of 9.6 ± 0.4 MPa.m0.5 and an impressive 3-point bending strength of 2.04 ± 0.08 GPa. The hydrothermal stability of the 1 mol% Y2O3 + 1 mol% Nd2O3 co-stabilized ZrO2-WC (60/40) composites was compared with that of the equivalent 2 mol% Y2O3 stabilized ceramic. The double stabilized composite did not degrade in 1.5 MPa steam at 200 °C after 4000 min, whereas the yttria stabilized composite degraded after less than 2000 min. Moreover, the (1Y,1Nd) ZrO2-WC composites have a substantially higher toughness (~9 MPa.m0.5) than their 2Y stabilized equivalents (~7 MPa.m0.5).  相似文献   

20.
Conducting polyaniline/cobaltous oxide composites have been synthesized using in situ deposition technique by placing fine graded/cobaltous oxide in polymerization mixture of aniline. The a.c. conductivity and dielectric properties are studied by sandwiching the pellets of these composites between the silver electrodes. It is observed that the values of conductivities increase up to 30 wt% of cobaltous oxide in polyaniline and decrease thereafter. Initial increment in conductivity is due to extended chain length of polyaniline where polarons possess sufficient energy to hop between favourable sites. Beyond 30 wt% of cobaltous oxide in polyaniline, blocking of charge carriers takes place reducing the conductivity values. It can be noted that the value of dielectric constant increases up to 10 wt% of cobaltous oxide. Thereafter, it decreases up to 30 wt% of cobaltous oxide and again increases up to 40 wt% of cobaltous oxide and decreases thereafter. The observed behaviour is attributed to the variation of a.c. conductivity. And it is observed that the dielectric loss increases up to 10 wt% of cobaltous oxide in polyaniline, decreases to a lower value of 20 wt% of cobaltous oxide and increases to 35 wt% and thereafter decreases. These values go in accordance with the values of dielectric constant. The results obtained for these composites are of greater scientific and technological importance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号