首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
利用三量子最大slice态作为量子信道,提出了单量子酉算子的受控远程执行的两个协议。首先,利用双向量子隐形传态(BQST),给出了一个任意单量子酉算子的受控隐形传输方案。结果表明,通过非最大纠缠信道,发送者能够在遥远的接受者的量子系统上远程地执行一个任意单量子酉算子。如果发送者和控制者对各自量子执行恰当的投影测量,那么量子算子的受控远程执行的成功概率就能达到1。其次,提出了一种不使用BQST方法的部分未知算子的受控远程控制协议。此协议因部分未知算子取自于两个限制集,减少了量子纠缠和经典通信耗费。在这些方案中,当且仅当控制者愿意帮助接受者远程操作,量子算子的受控远程执行才能完成。  相似文献   

2.
彭家寅 《计算机应用研究》2020,37(12):3731-3735
为了解决任意二量子通信问题,首先给出了五粒子和七粒子纠缠态的构造方法,并提供了它们的量子线路图。其次,以该五粒子纠缠态为量子信道,提出一个任意二粒子未知量子态的受控隐形传态协议。该协议在监察者Charlie的控制下,Alice进行四粒子投影测量和经典通信,Bob采用简单酉变换就能以100%的概率成功重构一个任意二粒子纠缠态。最后,利用七粒子纠缠态为量子信道,提出了任意二粒子纠缠态的联合受控远程制备方案。在此方案中,发送者Alice用自己掌握被制备态的部分信息构造测量基,发送者Bob采用前馈测量策略,接收者Diana在监控者Charlie的帮助下,通过简单幺正变换就能确定性地恢复原始态。  相似文献   

3.
We present an efficient scheme for five-party quantum state sharing (QSTS) of an arbitrary m-qubit state with multiqubit cluster states. Unlike the three-partite QSTS schemes using the same quantum channel [Phys. Rev. A 78, 062333 (2008)], our scheme for sharing of quantum information among five parties utilizing a cluster state as an entangled resource. It is found that the six-partite cluster state can be used for QSTS of an entangled state, the five-partite cluster state can be used for QSTS of an arbitrary two-qubit state and also can be used for QSTS of an arbitrary m-qubit state. It involves two-qubit Bell-basis or three-qubit GHZ-basis measurements, not multipartite joint measurements, which makes it more convenient than some previous schemes. In addition, the total efficiency really approaches the maximal value.  相似文献   

4.
In this paper, we present a possible improvement of the successful probability of joint remote state preparation via cluster states following some ideals from probabilistic joint remote state preparation (Wang et al. in Opt Commun, 284:5835, 2011). The success probability can be improved from $1/4$ to 1 via the same quantum entangled channel by adding some classical information and performing some unitary operations. Moreover, we also discussed the scheme for joint remote preparation via cluster-type states. Compared with other schemes, our schemes have the advantage of having high successful probability for joint preparation of an arbitrary two-qubit state via cluster states and cluster-type states.  相似文献   

5.
We propose two deterministic remote state preparation (DRSP) schemes by using the Brown state as the entangled channel. Firstly, the remote preparation of an arbitrary two-qubit state is considered. It is worth mentioning that the construction of measurement bases plays a key role in our scheme. Then, the remote preparation of an arbitrary three-qubit state is investigated. The proposed schemes can be extended to controlled remote state preparation (CRSP) with unit success probabilities. At variance with the existing CRSP schemes via the Brown state, the derived schemes have no restriction on the coefficients, while the success probabilities can reach 100%. It means the success probabilities are greatly improved. Moreover, we pay attention to the DRSP in noisy environments under two important decoherence models, the amplitude-damping noise and phase-damping noise.  相似文献   

6.
We present a scheme for joint remote implementation of an arbitrary single-qubit operation following some ideas in one-way quantum computation. All the senders share the information of implemented quantum operation and perform corresponding single-qubit measurements according to their information of implemented operation. An arbitrary single-qubit operation can be implemented upon the remote receiver’s quantum system if the receiver cooperates with all the senders. Moreover, we study the protocol of multiparty joint remote implementation of an arbitrary single-qubit operation with many senders by using a multiparticle entangled state as the quantum channel.  相似文献   

7.
孙力  须文波 《计算机科学》2006,33(9):250-252
核磁共振(NMR)技术被认为是最为有效的实现量子计算的物理体系之一。多量子算符代数理论可以将幺正变换分解为一系列有限的单量子门和对角双量子门的组合。本文以核磁共振和多量子算符代数理论为基础,提出了实现任意相位旋转角度的一般化量子搜索算法的核磁共振脉冲序列设计方法,并在量子计算仿真程序上进行了双量子位的不同相位旋转角度的量子搜索算法的实验验证。  相似文献   

8.
We present several schemes for joint remote preparation of arbitrary two- and three-qubit entangled states with complex coefficients via two and three GHZ states as the quantum channel, respectively. In these schemes, two senders (or N senders) share the original state which they wish to help the receiver to remotely prepare. To complete the JRSP schemes, some novel sets of mutually orthogonal basis vectors are introduced. It is shown that, only if two senders (or N senders) collaborate with each other, and perform projective measurements under suitable measuring basis on their own qubits, respectively, the receiver can reconstruct the original state by means of some appropriate unitary operations. The advantage of the present schemes is that the success probability in all the considered JRSP can reach 1.  相似文献   

9.
We present a highly efficient scheme for perfect joint remote preparation of an arbitrary \( 2^{n} \)-qubit W state with minimum quantum resource. Both the senders Alice and Bob intend to jointly prepare one \( 2^{n} \)-qubit W state for the remote receiver Charlie. In the beginning, they help the remote receiver Charlie to construct one n-qubit intermediate state which is closely related to the target \( 2^{n} \)-qubit W state. Afterward, Charlie introduces auxiliary qubits and applies appropriate operations to obtain the target \( 2^{n} \)-qubit W state. Compared with previous schemes, our scheme requires minimum quantum resource and least amount of classical communication. Moreover, our scheme has a significant potential for being adapted to remote state preparation of other special states.  相似文献   

10.
We propose two novel schemes for probabilistic remote preparation of an arbitrary quantum state with the aid of the introduction of auxiliary particles and appropriate local unitary operations. The first new proposal could be used to improve the total successful probability of the remote preparation of a general quantum state, and the successful probability is twice as much as the one of the preceding schemes. Meanwhile, one can make use of the second proposal to realize the remote state preparation when the information of the partially entangled state is only available for the sender. This is in contrast to the fact that the receiver must know the non-maximally entangled state in previous typical schemes. Hence, our second proposal could enlarge the applied range of probabilistic remote state preparation. Additionally, we will illustrate how to combine these novel proposals in detail, and our results show that the union has the advantages of both schemes. Of course, our protocols are implemented at the cost of the increased complexity of the practical realizations.  相似文献   

11.
We study two-level q-deformed angular momentum states, and using q-deformed harmonic oscillators, we provide a framework for constructing qubits and quantum gates. We also present the construction of some basic one-qubit and two-qubit quantum logic gates.  相似文献   

12.
We propose a new scheme for efficient remote preparation of an arbitrary two-qubit state, introducing two auxiliary qubits and using two Einstein–Podolsky–Rosen (EPR) states as the quantum channel in a non-recursive way. At variance with all existing schemes, our scheme accomplishes deterministic remote state preparation (RSP) with only one sender and the simplest entangled resource (say, EPR pairs). We construct the corresponding quantum logic circuit using a unitary matrix decomposition procedure and analytically obtain the average fidelity of the deterministic RSP process for dissipative environments. Our studies show that, while the average fidelity gradually decreases to a stable value without any revival in the Markovian regime, it decreases to the same stable value with a dampened revival amplitude in the non-Markovian regime. We also find that the average fidelity’s approximate maximal value can be preserved for a long time if the non-Markovian and the detuning conditions are satisfied simultaneously.  相似文献   

13.
In this work, we present a novel and efficient information-processing way, multiparty-controlled joint remote state preparation (MCJRSP), to transmit quantum information from many senders to one distant receiver via the control of many agents in a network. We firstly put forward a scheme regarding MCJRSP for an arbitrary single-particle state via Greenberg–Horne–Zeilinger entangled states, and then extend to generalize an arbitrary two-particle state scenario. Notably, different from conventional joint remote state preparation, the desired states cannot be recovered but all of agents collaborate together. Besides, both successful probability and classical information cost are worked out, the relations between success probability and the employed entanglement are revealed, the case of many-particle states is generalized briefly, and the experimental feasibility of our schemes is analysed via an all-optical framework at last. And we argue that our proposal might be of importance to long-distance communication in prospective quantum networks.  相似文献   

14.
I present a new scheme for probabilistic remote preparation of a general two-qubit state by using two W-type states as the shared quantum channel and a proper POVM instead of the usual positive measurement. Also I explore the scheme??s applications to five special ensembles of two-qubit states. The success probability and the classical communication cost in different cases are calculated minutely, respectively, which show that the remote two-qubit preparation can be realized with higher probability after consuming some more classical bits provided that the two-qubit state to be prepared is chosen from the special ensembles.  相似文献   

15.
Quantum communication has attracted much attention in recent years. Deterministic joint remote state preparation (DJRSP) is an important branch of quantum secure communication which could securely transmit a quantum state with 100% success probability. In this paper, we study DJRSP of an arbitrary two-qubit state in noisy environment. Taking a GHZ based DJRSP scheme of a two-qubit state as an example, we study how the scheme is influenced by all types of noise usually encountered in real-world implementations of quantum communication protocols, i.e., the bit-flip, phase-flip (phase-damping), depolarizing, and amplitude-damping noise. We demonstrate that there are four different output states in the amplitude-damping noise, while there is the same output state in each of the other three types of noise. The state-independent average fidelity is presented to measure the effect of noise, and it is shown that the depolarizing noise has the worst effect on the DJRSP scheme, while the amplitude-damping noise or the phase-flip has the slightest effect depending on the noise rate. Our results are also suitable for JRSP and RSP.  相似文献   

16.
The protocols for joint remote preparation of an arbitrary two-particle pure state from a spatially separated multi-sender to one receiver are presented in this paper. We first consider the situation of two sender and demonstrate a flexible deterministic joint remote state preparation compared with previous probabilistic schemes. And then generalize the protocol to multi-sender and show that by only adding some classical communication the success probability of preparation can be increased to four times. Finally, using a proper positive operator-valued measure instead of usual projective measurement, we present a new scheme via two non-maximally entangled states. It is shown that our schemes are generalizations of the usual standard joint remote state preparation scheme and more suitable for real experiments with requirements of only Pauli operations.  相似文献   

17.
Quantum teleportation of an unknown quantum state is one of the few communication tasks which has no classical counterpart. Usually the aim of teleportation is to send an unknown quantum state to a receiver. But is it possible in some way that the receiver’s state has more quantum discord than the sender’s state? We look at a scenario where Alice and Bob share a pure quantum state and Alice has an unknown quantum state. She performs joint measurement on her qubits and channel to prepare Bob’s qubits in a mixed state which has higher quantum discord than hers. We also observe an interesting feature in this scenario, when the quantum discord of Alice’s qubits increases, then the quantum discord of Bob’s prepared qubits decreases. Furthermore, we show that the fidelity of one-qubit quantum teleportation using Bob’s prepared qubits as the channel is higher than using Alice’s qubits.  相似文献   

18.
We present a new scheme to share an arbitrary multi-qubit state between n agents via various probabilistic channels under cooperation of m?1 controllers with a certain probability. Compared with existing ones in this literature, our scheme involves various probabilistic channels, which weakens the requirement for quantum channels. The proposed scheme is symmetric which means even though the designed receiver has no capability of adopting appropriate strategies in introducing auxiliary qubits and performing two-qubit gates, it is still possible to faithfully share a multi-qubit state with assistance of other participants. This scheme involves only single-qubit measurements, CNOT gates, and local two-qubit gates with an auxiliary qubit, which makes it more convenient for physical realization.  相似文献   

19.
In this paper we propose two schemes for teleportation of a sub-class of tripartite states, the first one with the four-qubit cluster state and the second one with two Bell pairs as entanglement channels. A four-qubit joint measurement in the first case and two Bell measurements in the second are performed by the sender. Appropriate unitary operations on the qubits at the receiver’s end along with an ancilla qubit result in the perfect teleportation of the tripartite state. Analysis of the quantum circuits employed in these schemes reveal that in our technique the desired quantum tasks are achieved with lesser quantum cost, gate count and classical communication bits compared with other similar schemes.  相似文献   

20.
In this paper, several new protocols for the controlled remote state preparation (CRSP) by using the Brown state as the quantum channel are proposed. Firstly, we propose a CRSP protocol of an arbitrary two qubit state. Then, the CRSP protocol of an arbitrary three qubit state, which has rarely been considered by the previous papers, is investigated. The coefficients of the prepared states can be not only real, but also complex. To design these protocols, some useful and general measurement bases are constructed, which can greatly reduce the restrictions for the coefficients of the prepared states. The security analysis is provided in detail. Moreover, receiver??s all recovery operations are summarized into a concise formula.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号