首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
常用渗氮材料的调质硬度对渗氮层性能的影响   总被引:2,自引:0,他引:2  
对于40Cr、35CrMo、38CrMoAlA等常用渗氮材料的不同调质硬度对离子渗氮渗层性能的影响进行了试验分析。结果表明,调质硬度控制在HB250—280范围,可解决渗氮硬度不足和渗层深度偏浅的问题,并可改善渗层的硬度梯度。  相似文献   

2.
研究了CNO^-浓度、钒的添加及冷却方式对浴渗氮层显微硬度的影响,分析了相组成,组织和相变等因素和渗层硬度的关系,发现盐浴渗氮层的硬度受冷却方式的影响很大,而CNO^-浓度在一定范围变化则影响很小,钒的渗入有利于改善渗层硬主。对中、低碳钢的研究表明,渗后水冷和盐浴中添加钒等合元素可渗层硬度提高100-200HV。  相似文献   

3.
盐浴渗氮工艺参数和渗氮层硬度的关系   总被引:5,自引:0,他引:5  
研究了CNO-浓度、钒的添加及冷却方式对盐浴渗氮层显微硬度的影响。分析了相组成、组织和相变等因素和渗层硬度的关系。发现盐浴渗氮层的硬度受冷却方式的影响很大 ,而CNO-浓度在一定范围变化则影响很小 ,钒的渗入有利于改善渗层硬度。对中、低碳钢的研究表明 ,渗后水冷和盐浴中添加钒等合金元素可使渗层硬度提高 10 0~ 2 0 0HV。  相似文献   

4.
研究了不同渗氮时间下钛元素对42CrMo钢常规离子渗氮工艺的作用效果,表征分析了不同渗氮工艺下试样表面的渗层组织及性能。结果表明,钛催渗离子渗氮试样的表面硬度和渗层深度均明显高于常规离子渗氮。在535℃×3 h的工艺条件下,钛催渗离子渗氮试样渗层的表面硬度达到887.4 HV0.2,渗氮层厚度约为400μm。钛元素的加入促进了氮元素的渗透和扩散,在试样表面生成高硬度化合物TiN。相较于相同保温时间下的常规离子渗氮,钛催渗离子渗氮试样表面硬度提高了60 HV0.2,渗层厚度增加了80μm,渗氮效率提升了约25%。与常规离子渗氮相比,钛催渗离子渗氮工艺具有显著优势,不仅有利于改善渗层组织性能,增强渗氮效果,还提高了渗氮效率,使渗氮周期明显缩短。  相似文献   

5.
采用硬度测试、显微组织观察、脆性等级和疏松等级评价等方法研究了渗氮温度对42CrMo钢零件渗氮后氧化渗层性能的影响.结果表明:在渗氮后氧化处理过程中,渗层的表面硬度随着渗氮温度的升高出现先增后降的趋势;渗层深度和疏松等级随渗氮温度的升高而增加,但脆性等级变化不大.当渗氮温度为560℃时,42CrMo钢零件可获得表面硬度...  相似文献   

6.
304不锈钢双活性屏离子渗氮   总被引:2,自引:2,他引:0  
缪跃琼  高玉新  郑少梅 《表面技术》2016,45(4):95-98,115
目的 考察304不锈钢双活性屏离子渗氮技术的可行性及处理效果.方法 利用双活性屏离子渗氮(DASPN)和普通直流离子渗氮(DCPN)两种技术对304不锈钢进行低温(420℃)硬化处理,对比分析两种工艺所得渗层的组织,对比研究两种工艺所得渗层的相结构、硬度和耐蚀性能.结果 采用DASPN技术可获得比采用DCPN技术更为均匀、致密的渗层,渗层为单一S相层,硬度为763 HV0.25.电化学测试表明,两种渗氮技术相比,DASPN处理获得的渗层耐蚀性能更优.结论 采用DASPN技术对304不锈钢进行低温硬化处理,在试样距双屏的距离为70 mm时能够获得比DCPN更好的渗氮效果.该技术适于工业化推广应用.  相似文献   

7.
球铁曲轴常常由于渗氮层薄、质量不稳定而引起断裂失效,本课题研究了球铁曲轴加氧渗氮工艺。对球铁试样经570℃、580℃,不同氨气流量和氧加入量渗氮4h后的表面硬度、渗层深度及渗层组织进行分析,结果表明,加氧渗氮可获得比常规气体氮碳共渗更高的表面硬度和渗层深度。优选出的适合于球铁曲轴的加氧渗氮工艺为:570℃保温4h,氨气流量2000L/h,氧气流量10L/h,炉压35mm水柱;或580℃保温4h,氨气流量1800L/h,氧气流量10L/h,炉压35mm水柱,二种工艺均可获得深度超过0.20mm、表面硬度600HV0.1以上的渗层。  相似文献   

8.
TiAl基合金的辉光离子渗氮试验   总被引:4,自引:2,他引:4  
研究了TiAl基合金的辉光离子渗氮。渗氮气氛为NH3,渗氮温度分别为850℃、900℃、950℃,渗氮时间分别采用2h到12h不等。结果表明:TiAl基合金经辉光离子渗氮后,在表面形成由氮化物层和过渡层组成的氮化层,氮化层形成速度明显快于高温气体渗氮。采用NH3气氛、900℃×9h工艺参数时,渗层厚度可达12μm,渗层的显微硬度值可达1097HV0.1。  相似文献   

9.
利用活性屏离子渗氮技术对W18Cr4V高速钢进行渗氮处理,对其组织、硬度和渗层深度进行分析,并与普通直流离子渗氮作比较.结果表明,经活性屏离子渗氮处理后.渗氮层硬度梯度变得平缓.且最高硬度不在表面,而是在距表面一定距离处,这将能提高高速钢的耐疲劳性能,改善高速钢的内在质量.  相似文献   

10.
王怡萱 《表面技术》2024,53(7):200-207
目的 选择M50NiL钢(高合金钢)和AISI 4140钢(低合金钢)2种合金钢,研究渗氮气压对合金钢等离子体渗氮层组织结构、渗层厚度、硬度、韧性和摩擦磨损性能的影响规律。方法 根据离子渗氮GB/T30883—2017,在0~500 Pa渗氮气压范围内选择170、250、350 Pa 3个渗氮气压进行等离子体渗氮,研究渗层微观结构和性能。结果 对于M50NiL和AISI 4140两种合金钢,350 Pa时渗层厚度均最大,170 Pa次之,250 Pa厚度最小。M50NiL钢在350 Pa渗氮和AISI 4140钢在170 Pa渗氮时,表面层具有最优的强韧性。摩擦磨损性能显示,170 Pa和350 Pa气压渗氮的摩擦磨损性能明显优于250 Pa气压渗氮,其中磨损率规律与渗氮层的韧性值测试结果吻合。结论 气压影响了氮离子的能量和分布,从而影响了渗层厚度,钢中的合金元素含量和气压共同影响表面强韧化效果,并且表面强韧化效果直接影响渗氮层的摩擦磨损性能。  相似文献   

11.
《铸造技术》2015,(12):2873-2876
采用等离子体渗氮技术对铸铁材料进行氮化处理,研究了渗氮前后铸铁的组织和性能变化。结果表明,当渗氮温度不变,保温时间为10~12 h时,渗层深度和显微硬度随着保温时间的延长而增大。保温时间不变,渗氮温度为560~600℃时,渗层深度和显微硬度随温度升高先增大后减小。在580℃渗氮时,铸铁的组织主要为γ′相和ε相,硬度值达到最大值。  相似文献   

12.
对不同钢渗氮层在高于590℃不同温度退氮处理,然后测定其组织和性能的变化,结果表明,退氮处理后,所有试验钢的渗氮层硬度均有不同程度的下降,以38CrMoAl钢硬度下降最少,但表面有网状裂纹,再重新渗氮硬度不可能恢复;不锈钢经退氮处理可降低渗氮层脆性,增加渗层深度。  相似文献   

13.
对固溶态的T250钢进行不同渗氮时间和渗氮温度的离子渗氮试验。采用金相分析、硬度试验、XRD测定了渗氮层的深度、硬度、显微组织和物相。试验表明,T250钢渗氮后表面硬度大于900 HV0.3,基体硬度在500 HV0.3左右。渗层中的扩散层与基体边界明显。T250钢的渗氮温度与时效温度相近,可以在渗氮过程中实现材料的时效强化。  相似文献   

14.
应用一种新型真空感应渗氮方法对38CrMoAl钢表面制备渗氮层,采用SEM、EDS、自动显微硬度测试、滑动干摩擦试验等测试方法探讨了渗氮温度对38CrMoAl钢渗氮层组织、硬度和耐磨性的影响规律。结果表明:渗氮层表面平整,白亮层、扩散层、基体之间过渡平缓;随着渗氮温度升高,扩散层厚度、渗层硬度、耐磨性均呈现先增加后降低趋势;渗氮温度为560℃时,渗层厚度达到最高值180μm,渗层硬度达到最高值1250 HV0.025;渗氮温度560℃、590℃时的渗层试样在摩擦试验过程中仅有轻微的磨粒磨损,耐磨性能最佳。  相似文献   

15.
《铸造技术》2017,(3):573-576
对31CrMoV9钢在500~520℃氮势分段可控渗氮工艺进行了研究。结果表明:31CrMoV9钢在520℃深层渗氮,强渗期高氮势,扩散期低氮势的渗氮工艺,获得深硬化层,渗氮时间较短,表面硬度高,表面脆性Ⅰ级;在500℃~510℃渗氮,强渗8 h,氮势K_n=5.0~6.5,扩散4 h,K_n=1.5~2.5,渗氮后,渗氮层表面硬度800~860 HV,硬化层深度0.19~0.22 mm,表面脆性Ⅰ级;在515~520℃渗氮,强渗8 h,K_n=5.0~6.5,扩散4 h,K_n=1.5~2.5,渗氮后,渗氮层表面硬度710~800 HV,硬化层深度0.24~0.28 mm,表面脆性Ⅰ级。  相似文献   

16.
目的 在保障304奥氏体不锈钢良好耐蚀性前提下,研发显著改善表层硬度及耐磨性的低温高效离子渗氮技术。方法 低温离子渗氮时,在试样周围均匀放置微量海绵钛,研发304奥氏体不锈钢创新钛催渗低温离子渗氮技术。采用光学显微镜、扫描电子显微镜、能谱分析仪、X射线粉末衍射仪、显微维氏硬度计、摩擦磨损测试仪,以及电化学工作站等设备分别对试样截面显微组织、物相及成分、截面显微硬度、渗层耐磨性能、耐蚀性能等渗层组织性能进行测试与分析。结果 304奥氏体不锈钢在420 ℃/4 h钛催渗离子渗氮处理后,不仅保持了良好耐蚀性,且渗层耐蚀性比常规低温离子渗氮略有提升,同时,表面硬度与耐磨性大幅提高,表面硬度由常规离子渗氮的978HV0.025提升至1350HV0.025。磨损率由20.9 μg/(N.m)降低至7.4 μg/(N.m),下降了约2/3。特别有价值的是,钛催渗低温离子渗氮效率比传统离子渗氮显著提升,渗氮层厚度由常规离子渗氮的11.37 μm增厚到48.32 μm,即渗氮效率提高到常规离子渗氮的4倍以上。结论 本研究研发的钛催渗低温离子渗氮技术在保障304奥氏体不锈钢优良耐蚀性的同时,能够大幅度提升不锈钢表面硬度及耐磨性能,且具有显著的催渗效果。  相似文献   

17.
王琦  卢军  杨威  王静 《热处理》2013,(5):36-39
对304、316 L奥氏体不锈钢进行了不同温度、不同时间的离子渗氮。研究了渗层的显微组织和耐腐蚀性,测定了渗层的硬度。结果显示,随着渗氮温度的升高,两种钢渗层的表面硬度和深度都增加,而耐蚀性降低。渗氮温度≥400℃时,随着渗氮时间的延长,两种钢渗层的表面硬度变化不大,但深度明显增加,渗层的耐蚀性降低。当渗氮工艺相同时,316 L钢渗氮层的硬度、深度和耐蚀性均比304钢的渗氮层高。  相似文献   

18.
对0Cr17Ni4Cu4Nb钢在固溶和固溶+时效两种状态下进行两种不同的渗氮工艺试验,探讨了工艺温度、氨分解率、原始组织对该材料渗层深度、渗氮后组织和性能的影响。结果表明:经固溶后是否时效,0Cr17Ni4Cu4Nb钢渗氮后得到的渗氮层深度、表面硬度及心部硬度基本相同,可考虑采用固溶后直接渗氮;540℃渗氮后的性能优于480℃渗氮后的性能。  相似文献   

19.
缪跃琼  林晨  高玉新  郑少梅  程虎 《表面技术》2015,44(8):61-64,102
目的研究304不锈钢离子渗氮层和氮碳共渗层的组织、硬度及耐磨、耐蚀性能,并考察渗层的磨损机理。方法利用离子渗氮及氮碳共渗工艺在304不锈钢表面获得硬化层,利用XRD,OM及共聚焦显微镜、显微硬度仪、电化学测试仪,分析处理前后渗层的组织、相结构及渗层的硬度及耐磨耐蚀性能。结果 304不锈钢氮碳共渗和渗氮层主要为S相层,在相同工艺条件下,氮碳共渗工艺获得的渗层为γN+γC的复合渗层,且厚度大于单一渗氮层。渗氮层和氮碳共渗层硬度约为基体硬度的3.5倍。在干滑动摩擦条件下,氮碳共渗层比渗氮层具有更好的耐磨性能;渗氮层的磨损机理为磨粒磨损的犁沟效应和断裂,氮碳共渗层的磨损机理为磨粒磨损的犁沟和微切削。电化学测试表明,渗氮层和氮碳共渗层的耐蚀性能均优于基体。结论 304不锈钢在420℃进行离子渗氮和氮碳共渗处理后,硬度和耐磨性能可大幅提高,且氮碳共渗处理效果更佳。  相似文献   

20.
温度对AISI304奥氏体不锈钢离子渗氮的影响   总被引:1,自引:0,他引:1  
对AISI304奥氏体不锈钢进行脉冲电流辉光离子渗氮处理,在不同处理温度(480 ℃、520 ℃、580 ℃)下渗氮8 h后,获得了一定厚度的渗氮层.通过对渗层进行金相分析和硬度测试表明,随着渗氮温度升高,渗层厚度增大,显微硬度先增大后减小.综合温度对渗层厚度与显微硬度的影响,AISI304奥氏体不锈钢卡套辉光离子渗氮温度可采用520 ℃,渗氮后渗层厚度为90 μm,显微硬度为1317 HV0.1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号