首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
研究LiNi1/3Co1/3Mn1/3O2正极材料在四种不同的电解液体系中(LiPF6/EC+DEC(1∶1)、LiPF6/EC+DMC(1∶1)、LiPF∶6/EC+EMC(1∶1)和LiPF∶6/EC+PC+DMC(1∶1∶1))的电化学性能,讨论了正极材料与电解液的相容性。结果表明在1 mol·L-1LiPF6/EC+PC+DMC(1∶1∶1)电解液体系中,2.8~4.6 V电压范围内,LiNi1/3Co1/3Mn1/3O2的电化学性能最好,其首次放电比容量可达202.17 mA·h·g-1,50次的容量保持率可达88.58%。  相似文献   

2.
PMMA-[BMIM]PF_6-非质子溶剂复合型凝胶电解质的制备和性能   总被引:1,自引:0,他引:1  
采用烯类单体MMA在离子液体[BMIM]PF6和PC、DMC等形成的混合溶液中聚合,合成一系列PMMA-[BMIM]PF6-非质子溶剂复合型凝胶电解质,并对其性能进行了研究。结果表明,当m([BMIM]PF6)∶m(PC)=45∶55时,凝胶电解质PMMA-PC-[BMIM]PF6的室温电导率值为3.44×10-3S/cm,当m([BMIM]PF6)∶m(DMC-PC)=35∶65时,PMMA-LiPF6-(PC-DMC)-[BMIM]PF6的室温电导率值为10.05×10-3S/cm,并随温度升高而增加,变化规律符合VTF方程。凝胶电解质热分解温度都在250℃以上,在80℃时热失重小于0.97%。锂离子的迁移数约为0.3。电化学窗口高达5.1V。  相似文献   

3.
在1 mol.L-1LiPF6碳酸乙烯酯(EC)+碳酸二甲酯(DMC)+碳酸甲乙酯(EMC)(EC、DMC、EMC体积比为1∶1∶1)的电解液中加入添加剂氟代碳酸乙烯酯(FEC),用循环伏安(CV)、恒流充放电、电化学阻抗谱(EIS)等方法,研究了FEC对电解液的电化学窗口、LiNi0.5Mn1.5O4/Li和Li/MCMB半电池的性能影响。结果表明,在电解液中添加10%的FEC,可以拓宽电解液的电化学窗口,能在MCMB表面形成稳定的固体电解质相界面(SEI)膜,在室温1 C倍率下,LiNi0.5Mn1.5O4/Li电池循环50次后容量保持率能达到97.31%。  相似文献   

4.
李芳  张力 《上海化工》2004,29(1):22-25
采用溶液浇铸法制得以偏二氟乙烯与六氟丙烯共聚物P(VdF-HFP)为基质的聚合物固体电解质,并测定了该类电解质的电导率。讨论了锂盐浓度、增塑剂配比、纳米SiO2粉末掺入以及温度对膜的离子电导率的影响;结果表明:以P(VdF-HFP)为基质的电解质的室温电导率最高达到2.81×10-3S·cm-1。利用红外分析对聚合物固体电解质的导电性进行分析,探讨了聚合物固体电解质膜的各组分间相互作用的规律。  相似文献   

5.
聚合物电解质的离子电导率是电解质的一个重要参数 ,与聚合物电解质中的非晶态的存在有很大的关系。在本文中 ,以X射线衍射 (XRD)、差热分析 (DTA)和交流阻抗 (Acimpedance)为研究手段 ,研究了快冷对聚合物电解质的晶型转变和对聚合物电解质室温离子电导率的影响。在快速冷却的条件下 ,质量比为1∶1的PEO/LiClO4聚合物电解质的室温离子电导率可达 1 6 1x 10 -7S/cm ,比慢冷处理的相同体系的室温离子电导率提高了 1个数量级。实验证明 ,快速冷却可破坏聚合物的结晶性 ,提高聚合物电解质的离子电导率。  相似文献   

6.
以聚乙二醇甲醚甲基丙烯酸酯(PEGMA)、2-羟基-2-甲基苯丙酮(HMPP)和高氯酸锂(LiClO4)为原料,通过固液研磨和紫外固化的方式制备了基于PEGMA的新型透明凝胶聚合物电解质。通过一系列测试,对凝胶电解质的性能及其应用的电致变色器件性能进行了表征。结果表明,制备的凝胶电解质的可见光透过率达97%,热分解温度为250℃,室温下离子电导率为2. 56×10~(-4)S/cm以及应用的电致变色器件在660 nm处光学调制幅度达66. 97个百分点。  相似文献   

7.
李云  于涛  毕孝国  程明  张士宏 《广州化工》2011,39(6):4-6,30
通过正硅酸乙酯水解得到的SiO2溶胶,掺杂于(PEO)8-LiClO4固体电解质体系中。得到厚度约为130μm性能良好的聚合物电解质薄膜,利用交流阻抗法测定聚合物电解质的电导率,通过红外光谱对聚合物电解质薄膜的基团状态进行分析研究。结果表明掺杂SiO2后(PEO)8-LiClO4固体电解质的室温电导率有很大提高,在SiO2质量分数为10%时最高,达到2.522×10-6S/cm;温度的升高有利于电导率的提升,电导率与温度关系遵循Arrhenius方程,在lgσ-1000/T曲线上以为PEO的熔点为转折点,体现为两条斜率不同的直线,在80℃时体系的离子电导率为6.852×10-6 S/cm。红外光谱、XRD分析表明,加入SiO2后PEO的结晶度降低,体系不定形相增加,有利于离子电导率的提高。对该电解质薄膜进行了透光率测定,表明各组分下该薄膜透光率基本保持在96%以上,确定了将其应用于电致变色器件的可能性。  相似文献   

8.
以PEO为基质,复配少量纳米无机填料及低分子乙氧化物,制备出了新型的固态纳米复合聚合物电解质膜,利用交流阻抗法测试了聚合物电解质的离子电导率,对离子导电性能进行了研究。采用CPE元件的模拟电路具有很好的适用性。结果表明当低分子乙氧化物的加入量超过80%时电解质膜的电导率大幅提高,并且PEGDME优于PEG300。电导率在LiPF6加量在O:Li为8:1时达到最大,随着LiClO4加量的增加持续增加,随无机盐加量增加电解质膜的成膜性能变差。用多微孔高比表面的纳米SiO2粒子复合有利于改善聚合物的电导率。聚合物电解质离子电导率对温度的依赖关系符合Arrhenius方程。  相似文献   

9.
采用旋涂法在Li7La3Zr2O12(LLZO)基体上涂覆PVDF基聚合物膜,制备得到LLZO基夹层混合固态电解质,以改善LLZO与锂金属负极之间接触性差的问题。通过控制不同的旋涂转速,获得了表面光滑平整、无褶皱的聚合物膜;并从PVDF电解质溶液中双三氟甲基磺酰亚胺锂(LiTFSI)含量、夹层混合固态电解质放置时间及温度3个方面研究其对夹层混合固态电解质离子电导率的影响。结果表明:当m(PVDF)∶m(LiTFSI)=4∶1时,夹层混合固态电解质离子电导率为4.40×10-5S/cm;室温下放置20 d后,离子电导率减小至1.70×10-5S/cm,且离子电导率随温度的升高而增大,90℃时为7.07×10-5S/cm。  相似文献   

10.
一种双离子梳状聚合物电解质的合成与性能研究   总被引:2,自引:1,他引:1  
以端基含有烯丙基侧链含有氯甲基的不饱和聚醚 (UPEO)与苯乙烯 (St)共聚 ,得到以聚烯烃为主链、PEO为侧链、侧链挂载氯甲基的梳状聚合物 (CPPC) ,CPPC与亚硫酸锂反应 ,合成了一种新型单离子梳状聚合物电解质 (CPPL)。研究发现该梳状聚合物电解质的玻璃化温度 (θg)取决于苯乙烯的配比和磺化反应效率。对比研究了CPPL和CPPL复合LiClO4而成的双离子梳状聚合物电解质(CPPL2 )的θg、热稳定性、电化学窗口和电导率。测定结果表明 :CPPL和CPPL2的室温电导率分别为1.3× 10 -4s/cm和 7.8× 10 -4s/cm。  相似文献   

11.
超临界CO2萃取反应合成碳酸二甲酯   总被引:4,自引:0,他引:4  
实验测定了不同条件下碳酸二甲酯(DMC)、甲醇、乙二醇(EG)、碳酸乙烯酯(EC)在超临界相和液相中的分配系数,计算了DMC相对于其他组分的分离因子. DMC相对于甲醇的分离因子随EC浓度的升高而降低,随DMC和EG含量增加而升高,随压力增加而增大,随温度升高而变小. 这种变化规律表明利用超临界萃取与反应耦合提高酯交换反应转化率的前提是:(1) 反应体系中DMC的浓度要高,即进料中环氧乙烷(EO)的浓度要高,且EC转化率要高;(2) 低的反应温度和高的反应压力. 在160℃和5~20 MPa下,以环氧乙烷、甲醇和CO2为原料,考察了超临界CO2萃取与反应相耦合提高酯交换反应转化率的可行性. 研究结果表明,DMC与甲醇间的分离因子是影响超临界萃取反应操作过程中DMC收率的关键因素. 采用耦合技术可以提高DMC的单级收率约4%以上.  相似文献   

12.
碳酸二甲酯与苯酚酯交换合成碳酸二苯酯研究   总被引:6,自引:0,他引:6  
选择Lewis酸催化剂、分子筛催化剂、有机钛和锡化合物催化剂和不同负载型金属氧化物催化剂用于碳酸二甲酯(DMC)与苯酚酯交换合成碳酸二苯酯(DPC)的过程。试验结果表明,:MoO3/SiO2和TiO2/SiO2催化剂对该反应具有相对较好的催化活性和选择性。以MoO3/SiO2为催化剂,DMC转化率和DPC选择性分别为24.3%和37.6%;以TiO2/SiO2,为催化剂,DMC转化率和DPC选择性分别为13.7%和20.0%。在该酯交换反应中,SiO2与Al2O3和MgO相比,是一种良好的催化剂载体。  相似文献   

13.
A polymer electrolyte based on microporous poly(vinylidene fluoride-co-hexafluoropropane) (PVdF-HFP) film was studied for use in lithium ion batteries. The microporous PVdF-HFP (Kynar 2801) matrix was prepared from a cast of homogeneous mixture of PVdF-HFP and solvents such as ethylene carbonate (EC), dimethyl carbonate (DMC), and ethyl methyl carbonate (EMC). After evaporation of DMC and EMC, a sold film of the PVdF-HFP and the EC mixture was obtained. EC-rich phase started its formation in the PVdF-HFP/EC film at EC content of about 60 wt.% based on the total weight of PVdF-HFP and EC. The formation of the new phase resulted in the abrupt increase of the porosity of the PVdF-HFP matrix from 32 to 62%. The ionic conductivity of the film soaked in 1 M LiPF6-EC/DMC=1/1 was significantly increased from order of 10−4 S/cm to order of 10−3 S/cm at the EC content of 60 wt.%. Thermal and spectroscopic investigations showed that most of the EC interact with PVdF-HFP with the EC content being below 60 wt.%. MCMB/polymer electrolyte/LiCoO2 cells employing the microporous PVdF-HFP polymer film showed stable charging/discharging characteristics at 1C rate and good rate capability.  相似文献   

14.
柳娜  薛冰 《化学世界》2011,52(3):172-174,154
以Al2O3/SiO2为催化剂考察了碳酸二甲酯和碳酸二乙酯在液相条件下酯交换合成碳酸甲乙酯的过程.研究了活性组分负载量、催化剂用量、反应温度、反应时间等条件对酯交换反应的影响,并通过NH3-TPD和N2吸附脱附等手段对催化剂进行了表征.结果表明:以SiO2为载体,Al2O3负载量为12%的催化剂对碳酸二甲酯与碳酸二乙酯...  相似文献   

15.
Lithium lanthanum zirconium oxide (LLZO) garnet is a solid-state lithium ion conducting electrolyte promising all-solid-state batteries (ASSB) with high charge rates and good energy density due to its chemical stability against lithium metal anodes. LLZO has a high room temperature Li ion conductivity of ∼0.1–1 mS/cm in its cubic phase, but the stability of the cubic phase and ionic conductivity are highly sensitive to lithium stoichiometry. Stabilizing agents such as aluminum oxide and excess lithium are needed to preserve the cubic phase and compensate for lithium volatility. With the range of the end LLZO products spanning powders, porous membranes to dense membranes combined with sintering/calcination that often exceeds 1000°C, it is challenging to maintain an ideal lithium content given its high volatility from a single base powder. This study was designed to elucidate the sensitivities of aluminum doped LLZO powder synthesis and processing along its path to being utilized in a ceramic-manufacturing optimized ASSB. By utilizing thermogravimetric analysis in conjunction with in situ X-ray diffraction analysis of solid-state LLZO synthesis, it was discovered that the sensitivity of the LLZO cubic phase to lithium volatility can be reduced via early incorporation of excess lithium carbonate during initial phase formation in direct combination with controlled surface-to-volume ratios of the powders. Isostatically pressed powders of our LLZO sintered at 1100°C for 2 h showed RT ionic conductivity of 0.3–0.4 mS/cm measured via electrochemical impedance spectroscopy, and an improvement in microstructural uniformity with lowered porosity. The improved suppression of lithium volatilization has important implications for the scalable production of LLZO powders and assembly of ASSBs.  相似文献   

16.
The organic–inorganic hybrid material poly(styrene‐methyl methacrylate)‐silica (P(St‐MMA )‐SiO2) was successfully prepared by in situ polymerization confirmed by Fourier transform infrared spectroscopy and was employed to fabricate poly(vinylidene fluoride‐hexafluoropropylene) (P(VDF‐HFP )) based composite polymer electrolyte (CPE ) membrane. Desirable CPEs can be obtained by immersing the CPE membranes into 1.0 mol L?1 LiPF6‐EC /DMC /EMC (LiPF6 ethylene carbonate + dimethyl carbonate + ethylmethyl carbonate) liquid electrolyte for about 0.5 h for activation. The corresponding physicochemical properties were characterized by SEM , XRD , electrochemical impedance spectroscopy and charge–discharge cycle testing measurements. The results indicate that the as‐prepared CPEs have excellent properties when the mass ratio of the hybrid P(St‐MMA )‐SiO 2 particles to polymer matrix P(VDF‐HFP ) reaches 1:10, at which point the SEM analyses show that the as‐prepared P(St‐MMA )‐SiO 2 particles are uniformly dispersed in the membrane and the CPE membrane presents a homogeneous surface with abundant interconnected micropores. The XRD results show that there may exist interaction forces between the P(St‐MMA )‐SiO 2 particles and the polymer matrix, which can obviously decrease the crystallinity of the composite membrane. Moreover, the ionic conductivity at room temperature and the electrochemical working window of the CPE membrane can reach 3.146 mS cm?1 and 4.7 V, respectively. The assembled LiCoO2/CPE /Li coin cell with the CPE presents excellent charge–discharge and C ‐rate performance, which indicates that P(St‐MMA )‐SiO 2 hybrid material is a promising additive for the P(VDF‐HFP ) based CPE of the lithium ion battery. © 2016 Society of Chemical Industry  相似文献   

17.
常压下,从4-三氟甲氧基苯胺出发,以碳酸二甲酯(DMC)为甲氧羰基化试剂,在不添加其他任何辅助试剂条件下催化合成4-三氟甲氧基苯基氨基甲酸甲酯(TFMPC)。系统研究了负载型和非负载型催化剂、反应温度、反应时间对合成的影响,发现ZrClO2/SiO2在后处理和催化剂再生方面均比Zn(OAc)2/SiO2效果要好,同时在最佳工艺条件下可以得到较好的反应转化率和产品收率。  相似文献   

18.
The high flash point solvent adiponitrile (ADN) was investigated as co-solvent with ethylene carbonate (EC) for use as lithium-ion battery electrolyte. The flash point of this solvent mixture was more than 110 °C higher than that of conventional electrolyte solutions involving volatile linear carbonate components, such as diethyl carbonate (DEC) or dimethyl carbonate (DMC). The electrolyte based on EC:ADN (1:1 wt) with lithium tetrafluoroborate (LiBF4) displayed a conductivity of 2.6 mS cm−1 and no aluminum corrosion. In addition, it showed higher anodic stability on a Pt electrode than the standard electrolyte 1 M lithium hexafluorophosphate (LiPF6) in EC:DEC (3:7 wt). Graphite/Li half cells using this electrolyte showed excellent rate capability up to 5C and good cycling stability (more than 98% capacity retention after 50 cycles at 1C). Additionally, the electrolyte was investigated in NCM/Li half cells. The cells were able to reach a capacity of 104 mAh g−1 at 5C and capacity retention of more than 97% after 50 cycles. These results show that an electrolyte with a considerably increased flash point with respect to common electrolyte systems comprising linear carbonates, could be realized without any negative effects on the electrochemical performance in Li-half cells.  相似文献   

19.
以廉价的Na2Si O3·9H2O为原料,通过简单的焙烧处理,制备了系列无水硅酸钠,并将其作为固体碱催化剂应用于碳酸乙烯酯(EC)与CH3OH酯交换合成碳酸二甲酯(DMC)的反应。采用TG-DTA、XRD和Hammett指示剂法对无水Na2Si O3进行表征。结果表明,焙烧温度对无水Na2Si O3的碱强度、总碱量及催化活性没有显著影响。当焙烧温度为200℃时,样品(Na2Si O3-200)的碱强度(Ho)为15.0~18.4,总碱量为10.9 mmol/g。以Na2Si O3-200为催化剂,考察了原料配比、温度和时间对酯交换合成DMC反应的影响。当CH3OH与EC的摩尔比为10∶1,在65℃反应2 h后,EC转化率与DMC收率可分别达到89%和88%。即使在室温条件下,Na2Si O3-200也能有效地催化EC与甲醇酯交换反应的进行。此外,经过4次使用后,Na2Si O3-200的催化活性没有出现明显下降的趋势。  相似文献   

20.
A series of methacrylate-crosslinked polymers were investigated as potential polymer electrolytes for energy storage application. Methacrylate ester crosslinkers (25–50 mol.%) with different spacer lengths and MMA as comonomer were polymerised into thin films. Mixtures of ethylene carbonate and propylene carbonate (EC/PC) or alternatively the ionic liquid 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide (EMIM TFSI), both doped with lithium bis(trifluoromethane)sulfonimide (LiTFSI), fulfilled the role of electrolyte and porogen simultaneously. Ionic conductivity increased with increasing porogen content, Li ion concentration, and decreasing amounts of crosslinker (maximum values: 0.5 mS/cm (EC/PC) and 4.5 mS/cm (EMIM TFSI)). Thin films with permanent porosity were obtained for both electrolyte systems. The flexibility of the films increased with a lower concentration of crosslinker or the choice of a crosslinker with a longer spacer. The relationship between pore size, pore morphology, glass transition temperature and ionic conductivity on the other hand was complex and did not exhibit distinct trends. High thermal stability, ionic conductivity and tunable mechanical properties make these polymer thin films attractive candidates as in situ filled Li ion battery separator films either preformed or directly printed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号