首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Chassis dynamometer tests were performed on seven light heavy-duty diesel trucks comparing the emissions of a California diesel fuel with emissions from four other fuels: ARCO emissions control diesel (EC-D) and three 20% biodiesel blends (one yellow grease and two soy-based). The EC-D and the yellow grease biodiesel blend both showed significant reductions in total hydrocarbons (THC) and carbon monoxide (CO) emissions over the test vehicle fleet. EC-D also showed reductions in particulate matter (PM) emission rates. NOx emissions were comparable for the different fuel types for most of the vehicles tested. The soy-based biodiesel blends showed smaller emissions differences over the test vehicles, including some increases in PM emissions. This is somewhat in contrast to previous studies that have shown larger reductions in THC, CO, and PM for biodiesel blends. The possible influence of different fuels, fuel properties, and engine load on emissions is also discussed.  相似文献   

2.
Biodiesel is an oxygenated diesel fuel made from vegetable oils and animal fats by conversion of the triglyceride fats to esters via transesterification. In this study we examined biodiesels produced from a variety of real-world feedstocks as well as pure (technical grade) fatty acid methyl and ethyl esters for emissions performance in a heavy-duty truck engine. The objective was to understand the impact of biodiesel chemical structure, specifically fatty acid chain length and number of double bonds, on emissions of NOx and particulate matter (PM). A group of seven biodiesels produced from real-world feedstocks and 14 produced from pure fatty acids were tested in a heavy-duty truck engine using the U.S. heavy-duty federal test procedure (transient test). It was found that the molecular structure of biodiesel can have a substantial impact on emissions. The properties of density, cetane number, and iodine number were found to be highly correlated with one another. For neat biodiesels, PM emissions were essentially constant at about 0.07 g/bhp-h for all biodiesels as long as density was less than 0.89 g/cm3 or cetane number was greater than about 45. NOx emissions increased with increasing fuel density or decreasing fuel cetane number. Increasing the number of double bonds, quantified as iodine number, correlated with increasing emissions of NOx. Thus the increased NOx observed for some fuels cannot be explained by the NOx/PM tradeoff and is therefore not driven by thermal NO formation. For fully saturated fatty acid chains the NOx emission increased with decreasing chain length for tests using 18, 16, and 12 carbon chain molecules. Additionally, there was no significant difference in NOx or PM emissions for the methyl and ethyl esters of identical fatty acids.  相似文献   

3.
为探讨生物柴油应用于船舶柴油机的可行性,将餐厨废弃油脂生物柴油与柴油混合,在船舶柴油机上进行试验,测试其对船舶柴油机性能、排放特性和燃烧特性的影响。结果表明:生物柴油混合物的高黏度以及低热值会降低有效热效率,并导致燃油消耗率略有升高;由于生物柴油的高含氧量促进完全燃烧,相比于柴油,燃烧生物柴油混合物后,一氧化碳排放量最高下降17%,二氧化碳排放量最高下降5.1%,二氧化硫排放量最高下降41%,碳烟排放量最高下降36%;生物柴油过快的燃烧速率提高了气缸内的燃烧温度,以及高含氧量促进了氮氧化物的排放;生物柴油混合物燃烧时的缸内压力与柴油非常接近。餐厨废弃油脂生物柴油对船舶柴油机的性能、燃烧特性和排放特性均具有较好的表现,可以作为柴油的替代燃料用于船舶柴油机。  相似文献   

4.
Two methods, diesel particulate filter (DPF) and selective catalytic reduction (SCR) systems,for controlling diesel emissions have become widely used, either independently or together, for meeting increasingly stringent emissions regulations worldwide. Each of these systems is designed for the reduction of primary pollutant emissions including particulate matter (PM) for DPF and nitrogen oxides (NOx) for SCR. However, there have been growing concerns regarding the secondary reactions that these aftertreatment systems may promote, involving unregulated species emissions. This study was performed to gain an understanding of the effects that these aftertreatment systems may have on the emission levels of a wide spectrum of chemical species found in diesel engine exhaust. Samples were extracted using a source dilution sampling system designed to collect exhaust samples representative of real-world emissions. Testing was conducted on a heavy-duty diesel engine with no aftertreatment devices to establish a baseline measurement and also on the same engine equipped first with a DPF system and then a SCR system. Each of the samples was analyzed for a wide variety of chemical species, including elemental and organic carbon, metals, ions, n-alkanes, aldehydes, and polycyclic aromatic hydrocarbons, in addition to the primary pollutants, due to the potential risks they pose to the environment and public health. The results show that the DPF and SCR systems were capable of substantially reducing PM and NOx emissions, respectively. Further, each of the systems significantly reduced the emission levels of the unregulated chemical species, while the notable formation of new chemical species was not observed. It is expected that a combination of the two systems in some future engine applications would reduce both primary and secondary emissions significantly.  相似文献   

5.
The impact of biodiesel and second generation biofuels on nitrogen oxides (NO(x)) emissions from heavy-duty engines was investigated using a California Air Resources Board (CARB) certified diesel fuel. Two heavy-duty engines, a 2006 engine with no exhaust aftertreatment, and a 2007 engine with a diesel particle filter (DPF), were tested on an engine dynamometer over four different test cycles. Emissions from soy- and animal-based biodiesels, a hydrotreated renewable diesel, and a gas to liquid (GTL) fuel were evaluated at blend levels from 5 to 100%. NO(x) emissions consistently increased with increasing biodiesel blend level, while increasing renewable diesel and GTL blends showed NO(x) emissions reductions with blend level. NO(x) increases ranged from 1.5% to 6.9% for B20, 6.4% to 18.2% for B50, and 14.1% to 47.1% for B100. The soy-biodiesel showed higher NO(x) emissions increases compared to the animal-biodiesel. NO(x) emissions neutrality with the CARB diesel was achieved by blending GTL or renewable diesel fuels with various levels of biodiesel or by using di-tert-butyl peroxide (DTBP). It appears that the impact of biodiesel on NO(x) emissions might be a more important consideration when blended with CARB diesel or similar fuels, and that some form of NO(x) mitigation might be needed for biodiesel blends with such fuels.  相似文献   

6.
One of the major technological challenges for the transport sector is to cut emissions of particulate matter (PM) and nitrogen oxides (NOx) simultaneously from diesel vehicles to meet future emission standards and to reduce their contribution to the pollution of ambient air. Installation of particle filters in all existing diesel vehicles (for new vehicles, the feasibility is proven) is an efficient but expensive and complicated solution; thus other short-term alternatives have been proposed. It is well known that water/diesel (W/ D) emulsions with up to 20% water can reduce PM and NOx emissions in heavy-duty (HD) engines. The amount of water that can be used in emulsions for the technically more susceptible light-duty (LD) vehicles is much lower, due to risks of impairing engine performance and durability. The present study investigates the potential emission reductions of an experimental 6% W/D emulsion with EURO-3 LD diesel vehicles in comparison to a commercial 12% W/D emulsion with a EURO-3 HD engine and to a Cerium-based combustion improver additive. For PM, the emulsions reduced the emissions with -32% for LD vehicles (mass/km) and -59% for the HD engine (mass/ kWh). However, NOx emissions remained unchanged, and emissions of other pollutants were actually increased forthe LD vehicles with +26% for hydrocarbons (HC), +18% for CO, and +25% for PM-associated benzo[a]pyrene toxicity equivalents (TEQ). In contrast, CO (-32%), TEQ (-14%), and NOx (-6%) were reduced by the emulsion for the HD engine, and only hydrocarbons were slightly increased (+16%). Whereas the Cerium-based additive was inefficient in the HD engine for all emissions except for TEQ (-39%), it markedly reduced all emissions for the LD vehicles (PM -13%, CO -18%, HC -26%, TEQ -25%) except for NOx, which remained unchanged. The presented data indicate a strong potential for reductions in PM emissions from current diesel engines by optimizing the fuel composition.  相似文献   

7.
The developments of both biodiesel and emulsified diesel are being driven by the need for reducing emissions from diesel engines and saving energy. Artificial chemical additives are also being used in diesel engines for increasing their combustion efficiencies. But the effects associated with the use of emulsified additive/biodiesel/diesel blends in diesel engines have never been assessed. In this research, the premium diesel fuel (PDF) was used as the reference fuel. A soy-biodiesel was selected as the test biodiesel. A biosolution made of 96.5 wt % natural organic enzyme-7F (NOE-7F) and 3.5 wt % water (NOE-7F water) was used as the fuel additive. By adding additional 1 vol % of surfactant into the fuel blend, a nanotechnology was used to form emulsified biosolution/soy-biodiesel/PDF blends for fueling the diesel engine. We found that the emulsified biosolution/soy-biodiesel/PDF blends did not separate after being kept motionless for 30 days. The above stability suggests that the above combinations are suitable for diesel engines as alternative fuels. Particularly, we found that the emulsified biosolution/soy-biodiesel/PDF blends did have the advantage in saving energy and reducing the emissions of both particulate matters (PM) and polycyclic aromatic hydrocarbons (PAHs) from diesel engines as compared with PDF, soy-biodiesel/PDF blends, and emulsified soy-biodiesel/ PDF blends. The results obtained from this study will provide useful approaches for reducing the petroleum reliance, pollution, and global warming. However, it should be noted that NO(x) emissions were not measured in the present study which warrants the need for future investigation.  相似文献   

8.
This study evaluated the effects of various combinations of fuels and emission control technologies on exhaust emissions from a heavy-duty diesel engine tested on an engine dynamometer. Ten fuels were studied in twenty four combinations of fuel and emission control technology configurations. Emission control systems evaluated were diesel oxidation catalyst (DOC), continuously regenerating diesel particulate filter (CRDPF), and the CRDPF coupled with an exhaust gas recirculation system (EGRT). The effects of fuel type and emission control technology on emissions of benzene, toluene, ethylbenzene, xylene (BTEX), and 1,3-butadiene, elemental carbon and organic carbon (EC/OC), carbonyls, polycyclic aromatic hydrocarbons (PAHs), and nitro-PAHs (n-PAHs) are presented in this paper. Regulated gaseous criteria pollutants of total hydrocarbons (THC), carbon monoxide (CO), oxides of nitrogen (NO(x)) and particulate matter (PM) emissions have been reported elsewhere. In general, individual unregulated emission with a CRDPF or an EGRT system is similar (at very low emission level) or much lower than that operating solely with a DOC and choosing a "best" fuel. The water emulsion PuriNO(x) fuel exhibited higher BTEX, carbonyls and PAHs emissions compared to other ultralow sulfur diesel (ULSD) fuels tested in this study while n-PAH emissions were comparable to that from other ULSD fuels. Naphthalene accounted for greater than 50% of the total PAH emissions in this study and there was no significant increase of n-PAHs with the usage of CRDPF.  相似文献   

9.
Biodiesel is one of the most promising alternative diesel fuels. As diesel emission regulations have become more stringent, the diesel particulate filter (DPF) has become an essential part of the aftertreatment system. Knowledge of kinetics of exhaust particle oxidation for alternative diesel fuels is useful in estimating the change in regeneration behavior of a DPF with such fuels. This study examines the characteristics of diesel particulate emissions as well as kinetics of particle oxidation using a 1996 John Deere T04045TF250 off-highway engine and 100% soy methyl ester (SME) biodiesel (B100) as fuel. Compared to standard D2 fuel, this B100 reduced particle size, number, and volume in the accumulation mode where most of the particle mass is found. At 75% load, number decreased by 38%, DGN decreased from 80 to 62 nm, and volume decreased by 82%. Part of this decrease is likely associated with the fact that the particles were more easily oxidized. Arrhenius parameters for the biodiesel fuel showed a 2-3times greater frequency factor and approximately 6 times higher oxidation rate compared to regular diesel fuel in the range of 700-825 degrees C. The faster oxidation kinetics should facilitate regeneration when used with a DPF.  相似文献   

10.
While the use of biodiesel appears to be a promising alternative to petroleum fuel, the replacement of fossil fuel by biofuel may not bring about the intended climate cooling because of the increased soil N2O emissions due to N-fertilizer applications. Using a life cycle assessment approach, we assessed the influence of soil nitrous oxide (N2O) emissions on the life cycle global warming potential of the production and combustion of biodiesel from canola oil produced in a semiarid climate. Utilizing locally measured soil N2O emissions, rather than the Intergovernmental Panel on Climate Change (IPCC) default values, decreased greenhouse gas (GHG) emissions from the production and combustion of 1 GJ biodiesel from 63 to 37 carbon dioxide equivalents (CO2-e)/GJ. GHG were 1.1 to 2.1 times lower than those from petroleum or petroleum-based diesel depending on which soil N2O emission factors were included in the analysis. The advantages of utilizing biodiesel rapidly declined when blended with petroleum diesel. Mitigation strategies that decrease emissions from the production and application of N fertilizers may further decrease the life cycle GHG emissions in the production and combustion of biodiesel.  相似文献   

11.
Hydrotreated vegetable oil (HVO) diesel fuel is a promising biofuel candidate that can complement or substitute traditional diesel fuel in engines. It has been already reported that by changing the fuel from conventional EN590 diesel to HVO decreases exhaust emissions. However, as the fuels have certain chemical and physical differences, it is clear that the full advantage of HVO cannot be realized unless the engine is optimized for the new fuel. In this article, we studied how much exhaust emissions can be reduced by adjusting engine parameters for HVO. The results indicate that, with all the studied loads (50%, 75%, and 100%), particulate mass and NO(x) can both be reduced over 25% by engine parameter adjustments. Further, the emission reduction was even higher when the target for adjusting engine parameters was to exclusively reduce either particulates or NO(x). In addition to particulate mass, different indicators of particulate emissions were also compared. These indicators included filter smoke number (FSN), total particle number, total particle surface area, and geometric mean diameter of the emitted particle size distribution. As a result of this comparison, a linear correlation between FSN and total particulate surface area at low FSN region was found.  相似文献   

12.
Aldehyde emissions were measured from two heavy-duty trucks, namely 2000 and 2008 model year vehicles meeting different EPA emission standards. The tests were conducted on a chassis dynamometer and emissions were collected from a constant volume dilution tunnel. For the 2000 model year vehicle, four different fuels were tested, namely California ultralow sulfur diesel (CARB ULSD), soy biodiesel, animal biodiesel, and renewable diesel. All of the fuels were tested with simulated city and high speed cruise drive cycles. For the 2008 vehicle, only soy biodiesel and CARB ULSD fuels were tested. The research objective was to compare aldehyde emission rates between (1) the test fuels, (2) the drive cycles, and (3) the engine technologies. The results showed that soy biodiesel had the highest acrolein emission rates while the renewable diesel showed the lowest. The drive cycle also affected emission rates with the cruise drive cycle having lower emissions than the urban drive cycle. Lastly, the newer vehicle with the diesel particulate filter had greatly reduced carbonyl emissions compared to the other vehicles, thus demonstrating that the engine technology had a greater influence on emission rates than the fuels.  相似文献   

13.
Although exhaust gas recirculation (EGR) is an effective strategy for controlling the levels of nitrogen oxides (NO(X)) emitted from a diesel engine, the full potential of EGR in NO(X)/PM trade-off and engine performance (i.e., fuel economy) has not fully been exploited. Significant work into the cause and control of particulate matter (PM) has been made over the past decade with new cleaner fuels and after-treatment devices emerging to comply with the current and forthcoming emission regulations. In earlier work, we demonstrated that engine operation with oxygenated fuels (e.g., biodiesel) reduces the PM emissions and extends the engine tolerance to EGR before it reaches smoke-limited conditions. The same result has also been reported when high cetane number fuels such as gas-to-liquid (GTL) are used. To further our understanding of the relationship between EGR and PM formation, a diesel particulate filter (DPF) was integrated into the EGR loop to filter the recirculated soot particulates. The control of the soot recirculation penalty through filtered EGR (FEGR) resulted in a 50% engine-out soot reduction, thus showing the possibility of extending the maximum EGR limit or being able to run at the same level of EGR with an improved NO(X)/soot trade-off.  相似文献   

14.
The problems of global warming and the unstable price of petroleum oils have led to a race to develop environmentally friendly biofuels, such as palm oil or ethanol derived from corn and sugar cane. Biofuels are a potential replacement for fossil fuel, since they are renewable and environmentally friendly. This paper evaluates the combustion performance and emission characteristics of Refined, Bleached, and Deodorized Palm Oil (RBDPO)/diesel blends B5, B10, B15, B20, and B25 by volume, using an industrial oil burner with and without secondary air. Wall temperature profiles along the combustion chamber axis were measured using a series of thermocouples fitted axially on the combustion chamber wall, and emissions released were measured using a gas analyzer. The results show that RBDPO blend B25 produced the maximum emission reduction of 56.9% of CO, 74.7% of NOx, 68.5% of SO(2), and 77.5% of UHC compared to petroleum diesel, while air staging (secondary air) in most cases reduces the emissions further. However, increasing concentrations of RBDPO in the blends also reduced the energy released from the combustion. The maximum wall temperature reduction was 62.7% for B25 at the exit of the combustion chamber.  相似文献   

15.
为探究生物柴油在船舶柴油机上的适用性,基于六缸中速柴油机试验台架,在不同负荷推进特性工况下,对燃用0#柴油、B10生物柴油柴油机的动力性能、经济性能、振动特性和缸内燃烧特性进行对比分析。结果发现:与0#柴油相比,燃用B10生物柴油柴油机的输出功率和耗油量基本不变,耗油率有所升高,但随着负荷的升高有所改善,燃用B10生物柴油使得在25%负荷工况下的柴油机缸盖振动烈度下降,50%、75%、90%、100%负荷工况下的柴油机缸盖振动烈度稍有上升,不同负荷工况下的机体振动烈度均下降;从振动功率谱密度可以看出,两种燃油在不同负荷下低频段的振动响应相似,但高频段处振动响应存在差异;对两种燃油的缸内压力和压力升高率曲线的分析可知,燃用B10生物柴油可以使缸内压力峰值和最大压力升高率升高,燃烧反应速度加快。综上,B10生物柴油在不同负荷工况下动力性能、经济性能、振动特性和缸内燃烧特性方面均表现良好,在船舶柴油机上具有较好的应用前景。  相似文献   

16.
Emissions from gasoline and diesel engines vary on time scales including diurnal, weekly, and decadal. Temporal patterns differ for these two engine types that are used predominantly for passenger travel and goods movement, respectively. Rapid growth in diesel fuel use and decreasing NOx emission rates from gasoline engines have led to altered emission profiles. During the 1990s, on-road use of diesel fuel grew 3 times faster than gasoline. Over the same time period, the NOx emission rate from gasoline engines in California was reduced by a factor of approximately 2, while the NOx emission rate from diesel engines decreased only slightly. Diesel engines therefore grew in both relative and absolute terms as a source of NOx, accounting for about half of all on-road NO, emissions as of 2000. Diesel truck emissions decrease by 60-80% on weekends. Counterintuitive responses to these emission changes are seen in measured concentrations of ozone. In contrast, elemental carbon (EC) concentrations decrease on weekends as expected. Weekly and diurnal patterns in diesel truck activity contribute to variability in the ratio of organic carbon (OC) to EC in primary source emissions, and this could be a source of bias in assessments of the importance of secondary organic aerosol.  相似文献   

17.
在一台四冲程直喷式柴油机上对比研究不同喷油策略对鱼油乙酯生物柴油混合燃料燃烧和排放特性的影响。发动机转速固定在1 500 r/min,喷油正时分别在21、24、27°CA BTDC的不同负荷下,使用的6种燃料为柴油及B20、B40、B60、B80、B100的鱼油乙酯生物柴油混合燃料。结果表明:在不同喷油正时、不同负荷下,生物柴油与柴油相比,发动机的氮氧化物和碳烟排放最大降幅为17.9%和55.38%;鱼油制取的生物柴油导致气缸压力峰值、放热率和最大压力升高率均低于柴油,碳氢化合物、一氧化碳排放降低。  相似文献   

18.
生物柴油的低温流动性能、点火与燃烧性能、润滑性能等液体燃料特性对其商业化推广应用及快速发展具有十分重要的意义。以16种生物柴油和0~#柴油为研究对象,对其液体燃料特性参数进行了试验研究。结果表明:16种生物柴油比0~#柴油的密度高2.86%~11.69%,亚麻籽油生物柴油和蓖麻籽油生物柴油的密度不符合我国生物柴油国家标准;16种生物柴油运动黏度均符合我国生物柴油国家标准,且均高于0~#柴油;花生油生物柴油和棕榈油生物柴油冷滤点高于0~#柴油,其余生物柴油均低于0~#柴油;16种生物柴油十六烷值均大于0~#柴油,热值均低于0~#柴油,葵花籽油生物柴油、菜籽油生物柴油和玉米油生物柴油十六烷值不符合我国生物柴油国家标准;16种生物柴油中除棕榈油生物柴油馏程低于0~#柴油外,其余均高于0~#柴油,且亚麻籽油生物柴油和蓖麻籽油生物柴油馏程不符合我国生物柴油国家标准;16种生物柴油中蓖麻籽油生物柴油残炭含量和灰分含量不符合我国生物柴油国家标准,大豆油生物柴油、棉籽油生物柴油、橡胶籽油生物柴油和蓖麻籽油生物柴油机械杂质含量不符合我国生物柴油国家标准;16种生物柴油的磨斑直径均低于0~#柴油,且差别不大。  相似文献   

19.
Biodiesel fuels, made from renewable resources, have emerged as viable alternatives to conventional diesel fuel, but their impact on emissions is not fully understood. This study examines elemental carbon (EC), organic carbon (OC), and polycyclic aromatic hydrocarbons (PAHs) emissions from cottonseed oil biodiesel (CSO-B100). Relative to normal diesel fuel, CSO-B100 reduced EC emissions by 64% (±16%). The bulk of EC emitted from CSO-B100 was in the fine particle mode (<1.4 μm), which is similar to normal diesel. OC was found in all size ranges, whereas emissions of OC(1.4-2.5) were proportionately higher in OC(2.5) from CSO-B100 than from diesel. The CSO-B100 emission factors derived from this study are significantly lower, even without aftertreatment, than the China-4 emission standards established in Beijing and Euro-IV diesel engine standards. The toxic equivalency factors (TEFs) for CSO-B100 was half the TEFs of diesel, which suggests that PAHs emitted from CSO-B100 may be less toxic.  相似文献   

20.
The effects of fuel sulfur content and primary dilution on PM number emissions were investigated during transient operations of an old and a modern diesel engine. Emissions were also studied during steady-state operations in order to confirm consistency with previous findings. Testing methods were concurrent with those implemented by the EPA to regulate PM mass emissions, including the use of the Federal Transient Testing Procedure-Heavy Duty cycle to simulate transient conditions and the use of a Critical Flow Venturi-Constant Volume System to provide primary dilution. Steady-state results were found to be consistent with previous studies in that nuclei-mode particulate emissions were largely reduced when lower-sulfur content fuel was used in the newer engine, while the nuclei-mode PM emissions from the older engine were much less affected by fuel sulfur content. The transient results, however, show that the total number of nuclei-mode PM emissions from both engines increases with fuel sulfur content, although this effect is only seen under the higher primary dilution ratios with the older engine. Transient results further show that higher primary dilution ratios increase total nuclei-mode PM number emissions in both engines.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号