首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this paper, the uplink of an asynchronous multi-carrier direct-sequence code-division multiple-access (MC-DS-CDMA) system with multiple antennas at both the transmitter and the receiver is considered. We analyze the system performance over a spatially correlated Rayleigh fading channel with multiple-access interference (MAI), and evaluate the antenna array performance with joint fading reduction and MAI suppression. Assuming perfect channel knowledge available at the transmitter, maximal ratio transmission is employed to weight the transmitted signal optimally in terms of combating signal fading. At the receiver, adaptive beamforming reception is adopted to both suppress MAI and combat the fading. Note that while correlations among the fades of the antennas in the receive array reduce the diversity gain against fading, the array still has the capability for interference suppression. We examine the effect of varying the number of transmit and receive antennas on both the diversity gain and the interference suppression.  相似文献   

2.
Code-Division Multiple-Access (CDMA) systems are interference limited,and therefore efficient interference management is necessary to enhance the performance of a CDMA system.In this paper,a successive beamforming (spatial filtering),linear decorrelating MultiUser Detection (MUD, temporal filtering) and diversity reception structure for uplink multicarrier Direct Sequence CDMA (DS-CDMA) system with antenna array are proposed.By beamforming,the antenna array suppresses interference according to the distinct array signature.Subsequently,linear decorrelating MUD is ap- plied to separate the signals of different users and eliminate Multiple Access Interference (MAI).Finally, the decorrelated signals at different subcarriers that belong to the same user are combined to achieve frequency diversity.Simulation results show that the proposed structure offers significant Bit Error Rate (BER) performance improvement by successively exploiting the space-time-frequency processing.  相似文献   

3.
The arrival of new data services for wireless mobile communications requires an efficient use of the available bandwidth. Interference-limited cellular systems based on code-division multiple access (CDMA) can benefit from multiuser detection (MUD) and beamforming with antenna array to reduce multiple-access interference. Group-based techniques have been proposed to reduce the complexity of space-time MUD and have been shown to provide a performance-complexity tradeoff between matched filtering and full MUD. In this paper, the intergroup interference, which is a limiting factor in group-based systems, is reduced using multistage parallel interference cancellation after group-based minimum mean square error (MMSE) linear filtering. In addition, the extra resources that are available at the receiver are exploited by sharing users among groups. The proposed receiver is shown to converge, as the number of stages increases, to the full space-time MMSE linear MUD filter. The results show that the new approach provides bit error rate (BER) performance close to the full MUD receiver at a fraction of the complexity.  相似文献   

4.
In this paper, a turbo receiver structure is proposed for the uplink of coded code-division multiple-access (CDMA) systems in the presence of unknown users. The proposed receiver consists of two stages following each other. The first stage performs soft interference cancellation and group-blind linear minimum mean square error (MMSE) filtering, and the second stage performs channel decoding. The proposed group-blind linear MMSE filter suppresses the residual multiple-access interference (MAI) from known users based on the spreading sequences and the channel characteristics of these users while suppressing the interference from other unknown users using a subspace-based blind method. The proposed receiver is suitable for suppressing intercell interference in heavily loaded CDMA systems. Since the knowledge of the number of unknown users is crucial for the proposed receiver structure, a novel estimator is also proposed to estimate the number of unknown users in the system by exploiting the statistical properties of the received signal. Simulation results demonstrate that the proposed estimator can provide the number of unknown users with high accuracy; in addition, the proposed group-blind receiver integrated with the new estimator can significantly outperform the conventional turbo multiuser detector in the presence of unknown users.   相似文献   

5.
This paper considers adaptive beamforming receiver that support multiple users, each having one transmit antenna. In certain circumstances, symbol error rate (SER) performance of the beamforming receiver degrades severely. In order to minimize the SER, minimum symbol error rate (MSER) beamforming receiver is utilized. Then, we propose an adaptive modulation scheme for the receiver to maintain the average SER below the target SER while maximizing the average throughput. The scheme uses the information on the direction of arrival and the average signal-to-noise ratio to decide the appropriate modulation mode. For comparison, the proposed scheme is also applied to minimum mean square error (MMSE) beamforming receiver system. Simulations were carried out in the presence of single and two interferers. Simulation results show that the performance of the proposed algorithm employing MSER beamforming is superior to its MMSE counterpart, with the largest advantage of 0.21 in the outage probability.  相似文献   

6.
Multiple-access interference (MAI) in a code-division multiple-access (CDMA) system plays an important role in performance analysis and characterization of fundamental system limits. We study the behavior of the output MAI of the minimum mean-square error (MMSE) receiver employed in the uplink of a direct-sequence (DS)-CDMA system. We focus on imperfect power-controlled systems with random spreading, and establish that in a synchronous system (1) the output MAI of the MMSE receiver is asymptotically Gaussian, and (2) for almost every realization of the signatures and received powers, the conditional distribution of the output MAI converges weakly to the same Gaussian distribution as in the unconditional case. We also extend our study to asynchronous systems and establish the Gaussian nature of the output interference. These results indicate that in a large system the output interference is approximately Gaussian, and the performance of the MMSE receiver is robust to the randomness of the signatures and received powers. The Gaussianity justifies the use of single-user Gaussian codes for CDMA systems with linear MMSE receivers, and implies that from the viewpoints of detection and channel capacity, signal-to-interference ratio (SIR) is the key parameter that governs the performance of the MMSE receiver in a CDMA system  相似文献   

7.
If the angular spread is not zero, the diversity gain can be achieved in the antenna-array reception. In order to achieve the diversity gain, we propose a beamforming method that utilizes two beamforming weight vectors and apply this beamforming technique to code-division multiple-access (CDMA) systems equipped with antenna arrays under a time-varying multipath-fading channel environment. In the proposed beamforming method, the channel vector has been estimated using two basis vectors that span the signal subspace. Since the proposed beamforming method utilizes two-dimensional (2D) signal subspace, it provides better performance than the conventional beamforming method, which utilizes one-dimensional signal subspace. Through simulation results, we can see that the performance is improved as the angular spread gets larger.  相似文献   

8.
A beamspace-time (BT) RAKE receiver is proposed for multiple accessinterference (MAI) suppression and multipath diversity reception insectored wireless CDMA communications. The scheme involves three stages.First, a set of adaptive beamformers encompassing a prescribed angular sectoris constructed on an antenna array, each providing effective suppression ofout-of-sector MAI and reception of in-sector signal. Second, a set of adaptivecorrelators is attached to each beam to combat in-sector MAI. Finally, thebeamspace correlator output data are combined to capture the signal multipathscoherently.The above three-stage operation is performed in a blind mode inthat no training signal is needed. The only information required is the signature,timing and a rough estimate of the angle of arrival (AOA) of the desired signal.  相似文献   

9.
In this paper, we consider the receiver design problem for the uplink multiuser code division multiple access (CDMA) communication system based on the neural network technique. The uplink multiuser CDMA communication system model is described in the form of space–time domain through antenna array and multipath fading expression. Novel suitable neural network technique is proposed as an effective signal processing method for the receiver of such an uplink multiuser CDMA system. By the appropriate choice of the channel state information for the neural network parameters, the neural network can collectively resolve the effects of both the inter-symbol interference due to the multipath fading channel and the multiple access interference in the receiver of the uplink multiuser CDMA communication system. The dynamics of the proposed neural network receiver for the uplink multiuser CDMA communication system is also studied.  相似文献   

10.
We introduce the new adaptive beamforming algorithm which improves the performance of an adaptive antenna array system through a forward/backward averaging scheme of the post-correlation signal vector and a signal enhancement scheme using Hermitian Toeplitzation of an array covariance matrix in DS/CDMA. A forward/backward averaging scheme decorrelates the received correlated signal after despreading in a matched filter and the Hermitian Toeplitzation scheme enhances the performance of the received signal by removing the undesired effect obtained from an array covariance matrix estimation. It is shown through simulation results that the performance of the proposed algorithm is very superior to that of the conventional Wiener maximal ratio combining (MRC) algorithm  相似文献   

11.
多用户检测技术是DS-CDMA中的一项关键技术,而天线阵也是一种减轻多用户干扰的方法,本文将两种技术结合在一起,提出了将子空间方法应用于天线阵多用户检测技术,这种技术可适用于低速移动台在慢衰落信道下的盲检测,仿真结果表明这种算法比单纯作最佳二维Rake接收要好,和有训练序列的先做CMOE再做最佳合并的性能差不多。  相似文献   

12.
Based on the minimum mean squared error (MMSE) between the data stream and the linear combiner output, a new multiuser detection (MUD) algorithm that combines space–time (ST) processing and antenna array on direct-sequence CDMA signals is proposed. The proposed ST-MUD algorithm is proved to be equivalent to two existing MMSE-based ST-MUD algorithms, and the theoretical BER performances for all the three algorithms are the same. The most attractive feature of the new ST-MUD algorithm is based on the fact that the new method does not require explicit estimation of channel and signaling information. This avoids any channel estimation error, and the method is thus more robust and more accurate than the other two ST-MUD algorithms in practical implementation. Adaptation of the proposed ST-MUD algorithm is implemented by using training sequences. Performance of this new multiuser detector is compared with that of two existing MMSE multiuser detectors and the conventional single-user space–time rake receiver through simulations. The proposed ST-MUD algorithm provides a performance better than existing algorithms and is especially suitable for practical CDMA systems.  相似文献   

13.
Iterative receivers for multiuser space-time coding systems   总被引:8,自引:0,他引:8  
Space-time coding (STC) techniques, which combine antenna array signal processing and channel coding techniques, are very promising approaches to substantial capacity increase in wireless channels. Multiuser detection techniques are powerful signal processing methodologies for interference suppression in CDMA systems. In this paper, by drawing analogies between a synchronous CDMA system and an STC multiuser system, we study the applications of some multiuser detection methods to STC multiuser systems. Specifically, we show that the so-called “turbo multiuser detection” technique, which performs soft interference cancellation and decoding iteratively, can be applied to STC multiuser systems in flat-fading channels. An iterative multiuser receiver and its projection-based variants are developed for both the space-time block coding (STBC) system and the space-time trellis coding (STTC) system. During iterations, extrinsic information is computed and exchanged between a soft multiuser demodulator and a bank of MAP decoders, to achieve successively refined estimates of the users' signals. Computer simulations demonstrate that the proposed iterative receiver techniques provide significant performance improvement over conventional noniterative methods in both single-user and multiuser STC systems. Furthermore, the performance of the proposed iterative multiuser receiver approaches that of the iterative single-user receiver in both STBC and STTC systems  相似文献   

14.
This paper proposes several blind adaptive receivers to eliminate multiple-access interference (MAI), intersymbol interference (ISI), and interchip interference (ICI) in direct-sequence code-division multiple access (DS/CDMA) downlink multiuser systems. We use the following concepts to formulate the cost function: 1) the variance of the despreading output approaches to the variance of the desired signal and 2) the discreteness property of the input signal. The proposed approaches are called variance-oriented approaches (VOAs). The VOA is then applied to three proposed receiver structures, especially the generalized sidelobe canceller (GSC) scheme that is generally the concept of spatial domain in beamforming system, to eliminate the MAI by one particular constraint in temporal domain. Besides, by this constraint, GSC filter possesses the property of global convergence in multipath environment once the channel estimation is appropriate. Simulation examples are shown to demonstrate the effectiveness and comparison of the proposed blind adaptive receivers.  相似文献   

15.
The developments of the high speed analog to digital converters (ADC) and advanced digital signal processors (DSP) make the smart antenna with digital beamforming (DBF) a reality. In conventional M-elements array antenna system, each element has its own receiving channel and ADCs. In this paper, a novel smart antenna receiver with digital beamforming is proposed. The essential idea is to realize the digital beamforming receiver based on bandpass sampling of multiple distinct intermediate frequency (IF) signals. The proposed system reduces receiver hardware from M IF channels and 2M ADCs to one IF channel and one ADC using a heterodyne radio frequency (RF) circuitry and a multiple bandpass sampling digital receiver. In this scheme, the sampling rate of the ADC is much higher than the summation of the M times of the signal bandwidth. The local oscillator produces different local frequency for each RF channel The receiver architecture is presented in detail, and the simulation of bandpass sampling of multiple signals and digital down conversion to baseband is given. The principle analysis and simulation results indicate the effectiveness of the new proposed receiver.  相似文献   

16.
A signal transmitted through a wireless channel may be severely distorted by intersymbol interference (ISI) and multiple access interference (MAI). In this paper, we propose an efficient CDMA receiver based on frequency domain equalization (FDE) with a regularized zero forcing (RZF) equalizer and parallel interference cancellation with a unit clipper decision function (CPIC) to combat both the ISI and the MAI. We call this receiver the FDE-RZF-CPIC receiver. This receiver is suitable for downlink zero padding CDMA cellular systems. The effects of the decision function, the channel estimation, the number of cancelled users, and the user loading on the performance of the proposed receiver are discussed in the paper. The bit error rate (BER) of the data received by the proposed receiver is evaluated by computer simulations. The experimental results show that the proposed receiver provides a good performance, even with a large number of interfering users. At a BER of 10?3, the performance gain of the proposed receiver is about 2 dB over the RAKE receiver with a clipper decision function and PIC in the half-loaded case (eight users) and is much larger in the full-loaded case (16 users).  相似文献   

17.
Although a code-division multiple-access (CDMA) system is spectrally efficient and has some immunity against intentional reception, its capacity and performance are generally limited by multiple access interference (MAI) caused by other users. For an aperiodic CDMA system, the spreading sequences span multiple symbol intervals, and the cross-correlations between these sequences, which are a measure of the MAI, are periodic over multiple symbols. In this paper, we present a receiver with a parallel architecture that converts an aperiodic CDMA sequence into a piecewise periodic sequence in each arm. We refer to this receiver as a cyclodespreader because the despreader exploits the cyclostationary property of an aperiodic signal. As a result, the transmitted data can be detected separately in each arm of the receiver using low-complexity conventional algorithms proposed for periodic CDMA systems. The goal of the receiver is to decode several signals received from different cochannel base stations. The performance of the system is evaluated using real aperiodic CDMA signals, and it is compared to that of a conventional matched filter (MF) receiver using the number of correctly decoded messages as the performance measure.  相似文献   

18.
The problem of blind demodulation of multiuser information symbols in a high-rate code-division multiple-access (CDMA) network in the presence of both multiple-access interference (MAI) and intersymbol interference (ISI) is considered. The dispersive CDMA channel is first cast into a multiple-input multiple-output (MIMO) signal model framework. By applying the theory of blind MIMO channel identification and equalization, it is then shown that under certain conditions the multiuser information symbols can be recovered without any prior knowledge of the channel or the users' signature waveforms (including the desired user's signature waveform), although the algorithmic complexity of such an approach is prohibitively high. However, in practice, the signature waveform of the user of interest is always available at the receiver. It is shown that by incorporating this knowledge, the impulse response of each user's dispersive channel can be identified using a subspace method. It is further shown that based on the identified signal subspace parameters and the channel response, two linear detectors that are capable of suppressing both MAI and ISI, i.e., a zero-forcing detector and a minimum-mean-square-error (MMSE) detector, can be constructed in closed form, at almost no extra computational cost. Data detection can then be furnished by applying these linear detectors (obtained blindly) to the received signal. The major contribution of this paper is the development of these subspace-based blind techniques for joint suppression of MAI and ISI in the dispersive CDMA channels  相似文献   

19.
In wideband direct sequence code division multiple access (W-CDMA), employing an adaptive antenna array is a very promising technique to reduce severe multiple access interference (MAI) from high rate users. A four-antenna pilot symbol-assisted coherent adaptive antenna array diversity (PSA-CAAAD) receiver comprising an adaptive antenna array based on a minimum mean squared error (MMSE) criterion and a RAKE combiner is implemented in preliminary laboratory and field experiments. There are two important design concepts of the PSA-CAAAD receiver. The first is that the adaptive antenna array forms an antenna beam for each resolved propagation path and tracks only slow changes in the directions of arrival (DOAs) and average powers of the desired and interfering user signals. The second is that the RAKE combiner tracks the instantaneous changes in channel conditions and coherently combines the signals of the desired user propagating along the resolved paths to maximize the instantaneous signal-to-interference plus background noise power ratio (SINR). This paper presents, both by laboratory and field experiments, the effectiveness of PSA-CAAAD receiver as a powerful means to reduce severe MAI from high rate users, and that it is more effective than using a space diversity receiver with the same number of antennas in the W-CDMA reverse link  相似文献   

20.
针对于CDMA系统自适应天线阵列,提出了一种新的盲自适应MSINR(Maximum Signal-to-Interference plus noise ratio)波束形成算法.首先,将MSINR准则转化为一种新的无约束损失函数,并且从理论上分析该损失函数的性质.然后,应用自适应拟牛顿方法得到在线迭代波束形成算法.该算法无需训练序,而是利用CDMA信号自身的结构特点,结合空间处理提高了系统性能.最后,给出了仿真结果,表明算法具有较快的收敛速度和良好的动态跟踪能力.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号