共查询到19条相似文献,搜索用时 55 毫秒
1.
概念漂移数据流挖掘算法综述 总被引:1,自引:0,他引:1
数据流是一种新型的数据模型,具有动态、无限、高维、有序、高速和变化等特性。在真实的数据流环境中,一些数据分布是随着时间改变的,即具有概念漂移特征,称为可变数据流或概念漂移数据流。因此处理数据流模型的方法需要处理时空约束和自适应调整概念变化。对概念漂移问题和概念漂移数据流分类、聚类和模式挖掘等内容进行综述。首先介绍概念漂移的类型和常用概念改变检测方法。为了解决概念漂移问题,数据流挖掘中常使用滑动窗口模型对新近事务进行处理。数据流分类常用的模型包括单分类模型和集成分类模型,常用的方法包括决策树、分类关联规则等。数据流聚类方式通常包括基于k- means的和非基于k- means的。模式挖掘可以为分类、聚类和关联规则等提供有用信息。概念漂移数据流中的模式包括频繁模式、序列模式、episode、模式树、模式图和高效用模式等。最后详细介绍其中的频繁模式挖掘算法和高效用模式挖掘算法。 相似文献
2.
《计算机应用与软件》2014,(8)
针对常规决策树算法在挖掘数据流时存在的不足,提出一种基于正态分布的决策树NDDT(Normal Distribution Decision Tree)算法。从近似正态分布的相关定理出发,详细分析算法的具体实现过程,给出算法实现的伪代码及注释,并借助Matlab软件进行建模与仿真。结果表明,NDDT算法具有精度高、精度不依赖于参数δ、处理时间短及处理时间与训练数据样本呈近似线性关系等优点。因此NDDT算法具有可行性、可靠性及良好的应用前景。 相似文献
3.
一种自适应局部概念漂移的数据流分类算法 总被引:1,自引:0,他引:1
本文基于DB2算法提出一个能实时检测局部概念漂移,并随之自适应调整的数据流分类算法IncreDB2.该算法动态增量维护一个层次分类树.当局部概念漂移出现时,IncreDB2不是重新构造一个全新的分类树,而是仅更新漂移所影响到的局部结点,具有较高的时间效率.实验结果表明了该算法的正确性和有效性. 相似文献
4.
随着通信技术和硬件设备的不断发展,尤其是小型无线传感设备的广泛应用,数据采集和生成技术变得越来越便捷和趋于自动化,研究人员正面临着如何管理和分析大规模动态数据集的问题。能够产生数据流的领域应用已经非常普通,例如传感器网络、金融证券管理、网络监控、Web日志以及通信数据在线分析等新型应用。这些应用的特征是环境配备有多个分布式计算节点;这些节点往往临近于数据源;分析和监控这种环境下的数据,往往需要对挖掘任务、数据分布、数据流入速率和挖掘方法有一定的了解。综述了分布式数据流挖掘的当前进展概况,并展望了未来可能的、潜在的专题研究方向。 相似文献
5.
6.
数据流挖掘算法研究综述 总被引:15,自引:3,他引:15
流数据挖掘是数据挖掘的一个新的研究方向,已逐渐成为许多领域的有用工具。在介绍数据流的基本特点以及数据流挖掘的意义的基础上,对现有数据流挖掘算法的主要思想方法进行了总结,并指出了这些方法的局限性。最后对数据流挖掘的发展方向进行了展望。 相似文献
7.
数据流的无限性、连续性和速度快等特点,使得挖掘出所有准确的数据流频繁项通常是不可能的.算法的空间复杂度和时间复杂度通常是评价频繁项挖掘算法优劣的两个主要度量.通过引入局部性原理改进数据流近似频繁项的挖掘算法,该算法的空间复杂性为O(1/ε),数据流每个数据项的最坏处理时间是O(1/ε),其最好处理时间是O(1),输出结果的频率值误差为∑_(i=2)^j(1-μi)×ki。 相似文献
8.
挖掘带有概念漂移的数据流对于许多实时决策是十分重要的.本文使用统计学理论估计某一确定模型在最新概念上的真实错误率的置信区间,在一定概率保证下检测数据流中是否发生了概念漂移,并将此方法和KMM(核平均匹配)算法引入集成分类器框架中,提出一种数据流分类的新算法WSEC.在仿真和真实数据流上的试验结果表明该算法是有效的. 相似文献
9.
10.
一些先进应用如欺诈检测和趋势学习等带来了数据流频繁模式挖掘的发展。不同于静态数据,数据流挖掘面临着时空约束和项集组合爆炸等问题。对已有数据流频繁模式挖掘算法进行综述并对经典和最新算法进行分析。按照模式集合的完整程度进行分类,数据流中频繁模式分为全集模式和压缩模式。压缩模式主要包括闭合模式、最大模式、top-k模式以及三者的组合模式。不同之处是闭合模式是无损压缩的,而其他模式是有损压缩的。为了得到有趣的频繁模式,可以挖掘基于用户约束的模式。为了处理数据流中的新近事务,将算法分为基于窗口模型和基于衰减模型的方法。数据流中模式挖掘常见的还包含序列模式和高效用模式,对经典和最新算法进行介绍。最后给出了数据流模式挖掘的下一步工作。 相似文献
11.
孟彩霞 《计算机工程与应用》2010,46(24):138-140
针对数据流的特点,对数据流中频繁模式挖掘问题进行了研究,提出了数据流频繁项集挖掘算法FP-SegCount。该算法将数据流分段并利用改进的FP-growth算法挖掘分段中的频繁项集。然后,利用Count Min Sketch进行项集计数。算法解决了压缩统计和计算快速高效的问题。通过和FP-DS算法的实验对比,FP-SegCount算法具有较好的时间效率。 相似文献
12.
数据流的无限性、高速性使得经典的频繁模式挖掘方法难以适用到数据流中。针对数据流的特点,对数据流中频繁模式挖掘问题进行了研究,提出了数据流频繁模式挖掘算法FP-SegCount。该算法将数据流分段并利用改进的FP-growth算法挖掘分段中的频繁项集,然后利用Count-Min Sketch进行项集计数。算法解决了压缩统计和计算快速高效的问题。通过实验分析,FP-SegCount算法是有效的。 相似文献
13.
近年来随着新的应用的出现,比如网络流量分析、在线事物分析和网络欺诈检测等,对数据流的挖掘成了一个越来越重要的课题。对于数据流频繁项集的挖掘,目前绝大部分的研究都集中在传统的窗口模式下进行,即时间衰退窗口模式、界标窗口模式和滑动窗口模式。Pauray S.M.Tsai于2009年提出了一种新的窗口模式:加权滑动窗口模式,并设计了两个基于此窗口模式的数据流频繁项集挖掘算法WSW和WSW-Imp,其中WSW-Imp是对WSW算法的改进。在研究了加权滑动窗口模式以及WSW-Imp算法的基础上,对WSW-Imp算法作了进一步的改进,设计了算法WSW-Imp2,并从理论上证明了WSW-Imp2算法比WSW-Imp算法更高效,实验结果也表明了这一点。 相似文献
14.
15.
当前许多工程领域产生大量高速实时的流式数据,基于流式数据的关联规则挖掘应用广泛,与传统的静态数据相比,流式数据上关联分析面临极大的资源挑战。提出了流式数据上关联规则的形式化定义和基本挖掘算法,系统地回顾了近年来流式数据上关联规则挖掘的研究进展,详细分析了目前挖掘算法研究中存在的主要问题和解决途径,阐述了未来的研究方向。 相似文献
16.
Most data-mining algorithms assume static behavior of the incoming data. In the real world, the situation is different and most continuously collected data streams are generated by dynamic processes, which may change over time, in some cases even drastically. The change in the underlying concept, also known as concept drift, causes the data-mining model generated from past examples to become less accurate and relevant for classifying the current data. Most online learning algorithms deal with concept drift by generating a new model every time a concept drift is detected. On one hand, this solution ensures accurate and relevant models at all times, thus implying an increase in the classification accuracy. On the other hand, this approach suffers from a major drawback, which is the high computational cost of generating new models. The problem is getting worse when a concept drift is detected more frequently and, hence, a compromise in terms of computational effort and accuracy is needed. This work describes a series of incremental algorithms that are shown empirically to produce more accurate classification models than the batch algorithms in the presence of a concept drift while being computationally cheaper than existing incremental methods. The proposed incremental algorithms are based on an advanced decision-tree learning methodology called “Info-Fuzzy Network” (IFN), which is capable to induce compact and accurate classification models. The algorithms are evaluated on real-world streams of traffic and intrusion-detection data. 相似文献
17.
数据流频繁项集挖掘是指在数据流中找出出现频数大于给定的最小支持度的项集过程。随着一些新兴应用如传感器网络、网络监控等的出现,数据流中频繁项集挖掘引起了很大的重视。提出了一种新颖的数据流频繁项集挖掘算法RFIF。不同于现有算法,RFIF算法针对现实中的一些实际应用,更多的考虑最近时间发生的事件,但也不完全抛弃历史数据,通过引入GIMT函数,逐渐加大项集支持度的阈值,减少对历史数据中频繁项集的维护。实验验证了算法的有效性。 相似文献
18.
基于S-CART决策树的多关系空间数据挖掘方法 总被引:1,自引:0,他引:1
针对空间数据关系复杂的情况,提出了一种改进的多关系数据挖掘结构分类与回归树(S-CART)算法,该算法首先利用空间关联索引表抽取不同主题图层之间的关系原子命题,然后基于逻辑谓词创建多关系二叉决策树,抽取空间关联规则,同时基于我国湖北大冶部分地区土壤污染数据验证算法的有效性。 相似文献
19.
数据流聚类是聚类分析中的重要问题。针对数据流的流速是变化的问题,在两阶段聚类框架基础上提出基于动态滑动窗口的数据流聚类算法。在线阶段,引入微聚类特征来存储数据流的概要信息,利用存储的概要信息动态调整滑动窗口规模,并计算数据点与微聚类中心的距离,以维护微聚类特征;离线阶段,对在线聚类阶段的聚类结果采用K-means算法进行宏聚类,生成最终聚类。实验结果表明,该算法具有较高的聚类质量和较好的伸缩性。 相似文献