首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到15条相似文献,搜索用时 46 毫秒
1.
以N,N′-亚甲基双丙烯酰胺(NMBA)为交联剂,2-丙烯酰胺基-2-甲基丙磺酸(AMPS)、丙烯酰胺(AM)、壳聚糖(CTs)为单体,采用紫外辐射固化法,在无任何气氛保护和不加引发剂的条件下,合成了高吸水性CTs/AM/AMPS树脂。利用FTIR和TG等方法分析了该树脂的化学结构,并考察了合成条件对其吸水性能的影响。实验结果表明,适宜的合成条件(w:基于反应体系的质量)为:n(AM)∶n(AMPS)=5∶1、CTs用量3.00%(w)、NMBA用量0.54%(w)、体系pH=2.5、3种单体总用量8.85%(w)、固化时间9 min。在此条件下合成的CTs/AM/AMPS树脂的最大吸水倍率为1 615 g/g。CTs在受热过程中由于网格被破坏而发生降解,因此CTs/AM/AMPS树脂为环保型可生物降解树脂。  相似文献   

2.
微波辐射合成三元共聚高吸水性树脂   总被引:2,自引:0,他引:2  
以N,N′-亚甲基双丙烯酰胺(NMBA)为交联剂,以丙烯酸(AA)、丙烯酰胺(AM)、2-丙烯酰胺基2-甲基丙磺酸(AMPS)为单体,在不加引发剂和无氮气保护的情况下,微波辐射合成AA/AM/AMPS共聚高吸水性树脂。通过单因素实验得出了反应的最佳条件为:n(AMPS):n(AA):n(AM)=1:2:1,pH=2.25,w (NMBA)=0.025%;采用FT-IR、AFM和DSC-TGA等对树脂结构、表面形态及热稳定性进行了表征。结果表明,在优化条件下高吸水性树脂其吸蒸馏水倍率为1 819 g/g,耐热性表明在60℃的环境中树脂吸水率高达745 g/g;在305℃之前树脂较稳定,且重复使用性好。  相似文献   

3.
均匀实验设计在合成淀粉基高吸水性树脂中的应用   总被引:1,自引:0,他引:1  
采用均匀实验方法进行实验设计,利用水溶液聚合法合成了玉米淀粉接枝丙烯酰胺-2-丙烯酰胺基-2-甲基丙磺酸高吸水性树脂。通过回归分析得到反应条件与高吸水性树脂的吸水倍数及凝胶强度之间的关系,并采用数学分析法和单因素实验方法确定了优选样的合成条件:w(引发剂)=0.54%,w(交联剂)=0.14%,w [丙烯酰胺(AM)]=20%,w(淀粉)=26.67%,n(2-丙烯酰胺基-2-甲基丙磺酸):n(AM)为0.16,反应温度为39.4℃时。在室温下,优选样在蒸馏水中的吸水倍数为786 g/g,凝胶强度为6.82 kPa。所制得的高吸水性树脂具有良好的热稳定性。  相似文献   

4.
紫外辐射法合成四元共聚高吸水性树脂及其性能研究   总被引:1,自引:0,他引:1  
采用紫外固化法,以丙烯酸(AA)、丙烯酰胺(AM)、2-丙烯酰胺基-2-甲基丙磺酸(AMPS)、淀粉为单体,以N,N′-亚甲基双丙烯酰胺(MBA)为交联剂,在不加引发剂和无任何气氛保护下合成了AA/AM/AMPS/淀粉共聚高吸水性树脂,考察了反应条件对树脂吸液倍率的影响,并采用红外、偏光显微镜对树脂的分子结构及表面形态进行了表征。通过正交实验得到最佳反应条件为:n(AMPS):n(AA):n(AM)=1:1:1,pH=6.5,w(MBA)=0.02%,w(淀粉)=12.5%,光照时间为4 min。在优化条件下合成的高吸水性树脂吸蒸馏水倍率为1 194 g/g,吸盐水倍率为38 g/g。并且树脂吸水过程符合一级动力学,  相似文献   

5.
以2-丙烯酰胺基-2-甲基丙磺酸(AMPS)、丙烯酰胺(AM)、顺丁烯二酸酐(MA)为单体,N,N-亚甲基双丙烯酰胺(NMBA)为交联剂,采用紫外光固化法,在不加引发剂和无任何气氛保护下合成了AMPS/AM/MA高吸水性树脂。利用FTIR和SEM方法研究了AMPS/AM/MA高吸水性树脂的分子结构和树脂吸水后的表面形态。考察了反应条件对AMPS/AM/MA高吸水性树脂吸水倍率的影响。实验结果表明,合成高吸水性树脂的优化条件为:n(AMPS)∶n(AM)∶n(MA)=2.0∶1.5∶0.3,w(NMBA)=0.06%(基于单体的总质量),pH=3.4,紫外光固化时间5.5 min。在优化条件下合成的AMPS/AM/MA高吸水性树脂的吸水倍率为1 627 g/g,且吸水速率较快,保水性能良好。  相似文献   

6.
以N,N′-亚甲基双丙烯酰胺(NMBA)为交联剂、过硫酸氨(APS)为引发剂,采用微波辐射法在羧甲基纤维素钠(CMC)上接枝2-丙烯酰胺基-2-甲基丙磺酸(AMPS)合成了耐盐高吸水性树脂P(AMPS/CMC);考察了微波功率(P)、辐射时间(t)、CMC用量、NMBA用量、APS用量、AMPS的中和度(N)对树脂吸水倍率的影响;采用FTIR,SEM,TG等手段对树脂进行了表征。实验结果表明,在最佳合成条件(m(NMBA)∶m(APS)∶m(CMC)∶m(AMPS)=0.5∶2∶5∶100,P=195W,t=3.15 min,N(AMPS)=45%,w(CMC+AMPS)=30%)下合成的P(AMPS/CMC),在离子强度为0.154 mol/L的NaCl,CaCl2,AlCl3溶液和去离子水中的吸水倍率分别为126,63,20,1 345 g/g。该树脂具有较好的层状结构和热稳定性(主分解温度在250℃以上),CMC的加入有利于提高树脂的热稳定性和耐盐性能。  相似文献   

7.
以羧甲基纤维素(CMC)和2-丙烯酰胺基-2-甲基丙磺酸(AMPS)为原料、过硫酸铵为引发剂、N,N′-亚甲基双丙烯酰胺为交联剂,采用微波辐射法制备了耐盐性高吸水性树脂CMC-g-PAMPS。考察了无机盐溶液的浓度、金属离子价态、溶液pH和单体总含量等因素对CMC-g-PAMPS树脂吸水倍率的影响,并对其吸水速率和保水性能进行了研究。实验结果表明,吸水倍率随无机盐溶液浓度的增加而减小;在不同价态金属离子盐溶液中,吸水倍率大小的顺序为:NaCl>CaCl2>AlCl3;在相同价态的金属阳离子盐溶液中,CMC-g-PAMPS树脂的吸水能力接近;CMC-g-PAMPS树脂在pH=4~8内能保持较高吸水倍率。  相似文献   

8.
以丙烯酰胺(AM)为单位,K_2S_2O_8为引发剂,N,N′-亚甲基双丙烯酰胺为交联剂,进行水溶液聚合,再对产物进行磺化反应,制得耐酸性高吸水性树脂。考察了该树脂吸水性能与磺化程度的关系,pH值、温度等因素对磺化效果的影响,以友该树脂在不同介质中的吸水张力。  相似文献   

9.
以海泡石黏土(ST)、2-丙烯酰胺基-2-甲基丙磺酸(AMPS)和丙烯酰胺(AM)为原料,N,N-亚甲基双丙烯酰胺(MBA)为交联剂,过硫酸钾(KPS)为引发剂,采用微波辐射法,通过接枝共聚合成了ST-g-P(AMPS-co-AM)高吸水性树脂。探讨了适宜的合成条件,并利用FTIR和TG等方法分析了该树脂的结构及其热稳定性。实验结果表明,适宜的合成条件为:AMPS中和度70%、m(AM)∶m(AMPS)=1.7、MBA用量0.06%(w)(用量均基于单体总质量)、KPS用量0.6%(w)、ST用量12.5%(w),在此条件下合成的ST-g-P(AMPS-co-AM)树脂在去离子水和生理盐水中的吸水倍率分别为1 280 g/g和90 g/g。适量ST的引入显著提高了树脂的吸水倍率、耐盐性和热稳定性。  相似文献   

10.
通过木质素磺酸盐与丙烯酰胺及部分中和的丙烯酸接枝共聚,将木质素磺酸盐引入至高吸水性树脂中,制备了木质素基高吸水性树脂LS-g-P(AA-co-AM),研究了其吸水保水性能.结果表明:被吸收液pH值对LS-g-P(AA-co-AM)树脂吸水性能有很大影响,当被吸收液的pH值在6~7时,树脂的吸水能力最强.树脂具有较好的重...  相似文献   

11.
以可生物降解的高分子材料聚琥珀酰亚胺为原料、己二胺为交联剂,合成了环境友好型聚天冬高吸水性树脂。红外光谱分析证实了交联产物的生成。同时考察了交联剂用量、交联温度、交联时间对聚天冬树脂吸水倍率的影响。结果表明,交联剂用量显著影响树脂的吸水倍率;反应温度低,交联速率慢,反应温度升高,交联速率加快;随反应时间的延长,树脂的交联度增大,吸水倍率降低。适宜的合成条件为:反应温度25~35℃,反应时间12~20h,交联剂己二胺的摩尔分数1.5%。在此条件下,聚天冬树脂在蒸馏水中的吸水倍率为1 480g/g;在质量分数1%的Na2SO4,KC l,NH4C l,NaC l溶液中,聚天冬树脂的吸液倍率分别为72,69,64,55g/g。实验数据验证了Flory理论。  相似文献   

12.
丙烯酸系高吸水树脂的应用研究   总被引:3,自引:0,他引:3  
丙烯酸系高吸水树脂具有良好的吸水性和保水性,介绍了丙烯酸系吸水树脂的性能及改性研究,重点对其在农业、石油、建筑、医疗卫生等领域的应用研究进展进行了综述。  相似文献   

13.
以AA(丙烯酸)、HMAC(羟丙烯酰胺基己基氯化铵)为原料,NMBA(N,N-亚甲基双丙烯酰胺)为交联剂,通过溶液聚合制得低阳离子度交联聚丙烯酸高吸水性树脂,研究了影响高吸水树脂性能的因素,并考察了其在去离子水中和NaCl、CaCl2、MgCl2溶液中的吸水性,以及高温高压下高吸水树脂的保水性。结果表明,加入HMAC阳离子单体,高吸水树脂的耐盐性增加,初始吸水速率增加,饱和吸水率下降,且高温高压下保水性增强。  相似文献   

14.
聚(丙烯酸-丙烯酰胺)的溶胀动力学   总被引:1,自引:0,他引:1  
采用实验方法研究了不同交联剂用量的高吸水剂聚(丙烯酸-丙烯酰胺)(P(AA-AM))在去离子水、质量分数为0.9%和3 0%的 NaCl 水溶液中的溶胀动力学。实验结果表明,P(AA-AM)的溶胀动力学符合二次速率方程,并得到脱水动力学模型常数。随交联剂用量的增加,P(AA-AM)的平衡溶胀度(Q_e)降低,而溶胀速率(k_s)提高;随介质中 NaCl 含量的增加,Q_e 显著降低,而 k_s增大。NaCl 水溶液中的溶质和溶剂一起被 P(AA-AM)吸收,P(AA-AM)在 NaCl 水溶液中与在去离子水中的吸收机理相同。P(AA-AM)溶胀凝胶的脱水动力学常数很小,保水能力良好,而且随交联剂用量的增加和环境温度的降低,保水能力增强。  相似文献   

15.
多环芳烃树脂的制备、性能及应用   总被引:10,自引:0,他引:10  
汪道明  石东  吴长钦 《石油化工》2001,30(3):232-235
多环芳烃树脂 (PAR)是 80年代中期发明的一种新型高分子材料 ,是以萘、蒽、菲、芘等多环芳烃及其衍生物或它们的混合物 ,以及煤焦油、沥青等富含多环芳烃的物质为原料 ,在酸性催化剂存在下 ,与交联剂进行缩聚反应得到[1~ 3] 。日本大谷教授等[1 ,2 ]对PAR在耐热性特种工程塑料以及耐热性粘结剂等方面的开发应用已见报道。日本住金化工公司开发的PAR新品种“SK树脂 -H” ,于 1 993年建成 1kt/a规模 ,已生产的品种在要求耐热、无油润滑、汽车、工业机械等领域已得到实际应用[4] 。在石油化工领域 ,原油一次、二次加工的有关原…  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号