首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
针对锂离子电池的荷电状态(SOC)估算问题,给出一种综合型卡尔曼滤波算法。该算法采用递推最小二乘算法(RLS)对锂离子电池模型参数进行实时在线辨识和参数更改;采用综合型卡尔曼滤波器估计电池SOC,即针对模型状态空间方程中的线性部分和非线性部分,分别使用线性卡尔曼滤波器(KF)和平方根高阶容积卡尔曼滤波器(SHCKF)计算。两种卡尔曼滤波器结合的综合型策略能够有效减小计算复杂度。其中,SHCKF结合了五阶球面-径向容积法则和平方根滤波技术,比扩展卡尔曼滤波器(EKF)、无迹卡尔曼滤波器(UKF)和容积卡尔曼滤波器(CKF)等传统非线性滤波器的估计精度更高,数值稳定性更强。实验结果证明了该综合型算法的可行性和有效性。  相似文献   

2.
传统的无迹卡尔曼滤波(UKF)和粒子滤波(PF)算法估计动力锂离子电池的荷电状态(SOC)时,常会出现电池模型参数不准确或粒子退化等问题导致估计精度差甚至系统发散等现象。为解决粒子匮乏和噪声干扰等问题,提出一种改进的估计算法——无迹粒子滤波算法(UPF)以实现SOC的精确估计。运用无迹卡尔曼算法为每个粒子计算均值和协方差,解决粒子滤波技术中粒子退化的问题。通过锂离子电池充放电实验,对等效模型进行辨识,最后在脉冲充放电和UDDS动态工况下对该算法进行测试验证。实验结果证明,基于二阶RC等效电路模型的UPF算法能显著提高SOC估计的实时性和精确性,其SOC估计精度在2%以内,收敛速度在250 s内。  相似文献   

3.
吴铁洲  刘康丽  杜炘宇 《电源技术》2021,45(5):602-605,625
电池在工作时电流变化剧烈,使用传统无迹卡尔曼算法(UKF)估算电池荷电状态(SOC)时有较大误差.为了提高SOC估算精度,基于锂离子电池混合噪声模型,利用粒子滤波算法对无迹卡尔曼的滤波进行修正,得到无迹卡尔曼粒子滤波算法(UKPF),并用该方法来估算锂离子电池的SOC.实验结果表明,UKPF算法SOC的估算误差小于2.1%,明显优于UKF和PF算法.  相似文献   

4.
高博洋  刘广忱  张建伟  王生铁 《电池》2021,51(3):270-274
通过电池脉冲放电实验,得到脉冲放电曲线,对曲线回弹段进行二阶指数拟合,结合电压零输入响应,离线辨识锂离子电池二阶RC等效电路模型的参数.为避免非线性函数线性化处理出现的误差,提高算法精度,采用无迹卡尔曼滤波(UKF)估计荷电状态(SOC).与扩展卡尔曼滤波(EKF)和安时积分法估计相比,UKF的估计误差在1%以内,精度...  相似文献   

5.
基于简化滞回OCV模型的锂电池SOC自适应估计策略   总被引:1,自引:0,他引:1  
受锂电池滞回效应的影响,开路电压与荷电状态之间的关系复杂,给电池建模以及荷电状态的精确估计带来较大困难。以锰酸锂电池单体为研究对象,在通过实验对滞回特性分析的基础上,提出简化的滞回开路电压模型,该模型根据滞回主环路中开路电压差之间的荷电状态积累量大小来构建滞回因子,修正开路电压与荷电状态之间的关系,以提升电池等效电路模型的精度;其次,针对测量噪声异常扰动、模型发生变化及荷电状态初值存在偏差的情况,利用分阶段变换测量协方差及构建自适应因子方法对无迹卡尔曼滤波算法改进,以平衡荷电状态的估计精度和收敛速度。实验结果表明,简化滞回开路电压模型能较为地准确描述锂电池动静态特性,所提自适应无迹卡尔曼滤波算法估计荷电状态的性能有较大提升。  相似文献   

6.
针对无迹卡尔曼滤波(UKF)和粒子滤波(PF)状态估计精度低的缺点,把平方根形式的无迹卡尔曼粒子滤波(SR-UPF)引入到电力系统状态估计中.在该方法中,无迹卡尔曼滤波作为概率密度函数进行更新,利用Markov链蒙特卡罗方法解决重采样后粒子的匮乏问题,利用平方根形式解决状态估计的收敛速度和稳定性问题.在保障精度的情况下...  相似文献   

7.
张宵洋  陈康义  吴新波 《电源技术》2022,(10):1156-1160
电池极化效应、随机干扰以及电池在整个寿命周期内高度非线性和动态特性,给电池荷电状态(SOC)在线精确估计带来了许多挑战。等效模型的精确表达与估计算法的优化设计是提高SOC估计精度的两大重要技术路线。对此,提出了基于分数阶模型自适应扩展卡尔曼粒子滤波(FOAEPF)的SOC估计方法。对分数阶模型(FOM)的二项式系数的求和项进行了适当的截断,从而得到了能够有效降低计算量的简化分数阶模型。然后运用AEPF算法估计电池的SOC。自适应扩展卡尔曼滤波被用作粒子滤波算法的建议分布函数,不但解决了粒子滤波算法的粒子退化问题,而且能够充分结合两类算法的优势实现二次滤波。多组实验的测试结果表明所提出的方法在削减计算负担的基础上,能够进一步提高电池SOC估计精度与鲁棒性。  相似文献   

8.
建立的锂电池非线性系统中存在不确定的观测模型误差时,会影响滤波器估计的精度和稳定性,严重时还会导致估计结果发散。针对这一问题,基于变分贝叶斯自适应滤波方法,提出了一种鲁棒UKF算法。该算法构建虚拟观测噪声用来补偿观测模型误差,并采用逆Wishart分布对虚拟观测噪声协方差建模。在变分迭代过程中,实现对系统状态和虚拟观测噪声协方差的联合后验概率估计,使估计结果自适应地逼近到真实分布。利用无迹卡尔曼滤波对系统状态进行更新。结合锰酸钾锂电池非线性模型进行仿真实验表明,该算法估计锂电池荷电状态具有很好的精度、跟踪速度以及鲁棒性。  相似文献   

9.
卢云帆  邢丽坤  张梦龙  郭敏 《电源技术》2022,(10):1151-1155
锂电池荷电状态(SOC)的精确估计是电动汽车安全行驶的保障。为了降低实际复杂工况下电池模型不契合实际电池参数时变特性造成的误差,采用无迹卡尔曼滤波算法(UKF)对电池模型进行在线参数辨识,再联合自适应无迹卡尔曼滤波算法(AUKF)估计锂电池SOC,将时变参数反馈到SOC估计的模型中,提高SOC估计精度和对各工况适应性,UDDS工况下通过与离线扩展卡尔曼滤波算法(EKF)、在线双扩展卡尔曼滤波算法(DEKF)进行比较分析,实验结果验证了UKF-AUKF的精确性和鲁棒性。  相似文献   

10.
针对扩展卡尔曼滤波算法中近似线性化处理及电池实际使用中出现的容量衰减引起的电池状态估算误差,提出基于容量修正的无迹卡尔曼滤波算法完成电池荷电状态估算,实现电池全寿命状态监测。通过分析锂电池工作特性和建立二阶RC等效电路模型,使用在线参数辨识法实现电池动态参数计算,为电池荷电状态估算奠定基础。结合电池实际工作中容量衰减特性,利用容量修正和无迹卡尔曼滤波算法完成电池荷电状态的在线实时估算,提高了估算精度。在恒流放电工况下,利用MATLAB仿真验证,表明无迹卡尔曼滤波算法的估算精度和鲁棒性优于扩展卡尔曼滤波算法,估算误差在3.5%以内。引入容量修正后,对老化情况下容量衰减的电池进行荷电状态估算,相比容量未修正时最大估算误差减小了3%,满足电池全寿命状态估算使用需求。  相似文献   

11.
封居强  孙亮东  蔡峰  伍龙  卢俊 《电源技术》2022,(11):1270-1274
电池的荷电状态(SOC)是电池管理系统(BMS)的重要指标,然而锂离子电池是一个具有复杂性噪声特点的非线性动态系统,精准估计SOC十分困难。针对无迹卡尔曼滤波(UKF)估计SOC时受模型精度和系统噪声预定变量影响较大问题,基于改进的PNGV模型提出一种两次非线性变换预测系统闭环端电压方法,采用动态函数提高卡尔曼增益,从而提高SOC估计精度和效果。通过充放电混合动力脉冲能力特性(HPPC)和混合放电比实验验证可得该方法具有良好的估计效果,在电压和电流变化剧烈的条件下,平均绝对误差为0.11%,精度相对提高了58%,均方根误差为0.15%,稳定性相对提高了63%。  相似文献   

12.
锂电池荷电状态(SOC)估计是电池管理系统中不可或缺的重要组成部分。锂电池传统整数阶等效电路模型未充分考虑其内部电化学反应现象,故将导致SOC估计结果偏离真实状态。文中以磷酸铁锂电池单体为研究对象,提出一种基于分数阶阻抗模型的锂电池SOC估计方法。该方法利用分数阶元件表征锂电池内部固液界面的输运现象和极化效应,基于分数阶微分理论建立状态转移方程和系统量测方程,并针对锂电池高度非线性的工作特性,利用无迹变换逼近原始状态分布,运用分数阶无迹卡尔曼滤波算法估计锂电池SOC。实验结果表明,分数阶阻抗模型能准确描述锂电池工作特性,所提算法在估计精度和跟踪速度上有一定提高。  相似文献   

13.
锂电池荷电状态(SOC)的准确估计对提高电池的动态性能和能量利用率至关重要。针对现有卡尔曼滤波SOC估计方法存在估计精度低、鲁棒性差等问题,采用锂离子电池的二阶电阻-电容等效电路模型,通过HPPC循环脉冲实验和动态应力测试工况放电实验,结合带可变遗忘因子的递推最小二乘法(VFFRLS)及开窗理论,对等效电路模型参数进行在线辨识,提出利用自适应扩展卡尔曼滤波(AEKF)算法和H滤波算法联合估计SOC的方法。结果表明:与AEKF算法相比,在DST工况下该算法可以使电池荷电状态估计的最大绝对误差减小3.902 9%,平均绝对误差减小0.962 2%,均方根误差减小0.551 5%。与H滤波算法相比,在DST工况下该算法可以使电池荷电状态估计最大绝对误差减小1.309%,平均绝对误差减小2.893 4%,均方根误差减小2.613 6%。  相似文献   

14.
文中提出一种联合扩展卡尔曼滤波的滑模观测器算法用于电动汽车电池的荷电状态(state of charge,SOC)估计。电池模型采用二阶Thevenin等效电路模型,辨识不同温度下的模型参数,分析温度对电池模型参数及精度的影响。针对扩展卡尔曼滤波对模型精度依赖性高及滑模观测器对噪声敏感导致估计结果存在较严重抖振现象的缺陷,提出在扩展卡尔曼滤波算法的状态修正方程中加入防抖函数,依据滑模观测器稳定性约束条件获取函数相关参数,得到一种新的联合扩展卡尔曼滤波的滑模观测器算法。所提算法能够同时综合扩展卡尔曼滤波器和滑模观测器优点,在滤除噪声的同时对建模误差也具有较强的鲁棒性。最后,设计相应的模拟工况进行实验,实验结果证明,所提算法在复杂的车载环境下拥有比扩展卡尔曼滤波和滑模观测器更高的电池SOC估计精度。  相似文献   

15.
采用传统无迹卡尔曼滤波器(UKF)来估计锂电池荷电状态(SOC)的结果较为精确,但其应用前提是要精确获得系统过程噪声和观测噪声的统计特性。结合UKF与自适应滤波,提出一种自适应UKF(AUKF)算法,以二阶RC等效电路模型为基础,并以磷酸铁锂电池为测试对象,通过实验数据结合最小二乘法完成模型参数辨识,提出并详细给出基于无损交换(UT)自适应卡尔曼滤波器的算法步骤,测试实验结果表明:采用AUKF的算法估计锂电池SOC精度在恒流和美国城市循环工况(UDDS)动态工况下均能达到1.2%以内,相比传统的UKF算法具有更强的估计精度和自适应跟踪能力。  相似文献   

16.
高精度的状态估计是配电网安全稳定运行的基础。粒子滤波(Particle Filter,PF)选取重要性密度函数不准确以及卡尔曼框架下滤波方法对非线性系统滤波精度有限的问题,把容积粒子滤波(Cubature Particle Filter,CPF)引入配电网状态估计中。鉴于容积卡尔曼滤波(Cubature Kalman Filter,CKF)在状态更新阶段融入了最新量测,因此在粒子滤波框架下,利用CKF算法设计PF的重要性密度函数,采样获得的带权值粒子更加逼近真实后验分布,提高了状态估计精度。在三相不平衡配电网中进行仿真分析,结果表明,CPF算法比UKF滤波精度高。  相似文献   

17.
锂电池荷电状态(SOC)的准确估算是制约电动汽车发展的关键技术。基于Thevinin模型建立状态空间方程组,将无迹卡尔曼滤波(UKF)应用到锂电池SOC估算中,通过无迹变换(UT)的方式避免对非线性状态方程的线性化,在不增加系统求解复杂度的前提下提高滤波精度,实现非线性条件下锂电池SOC的准确估算。仿真实验结果表明,UKF估算锂电池SOC的整个过程误差控制在1%以内,其精度明显高于拓展卡尔曼滤波(EKF)的4%,实现了锂电池SOC估算精度的提高,更适用于电动汽车锂电池SOC的估算。  相似文献   

18.
锂离子电池荷电状态(SOC)精确估计是延长电池寿命和安全使用的关键。为了准确估计电池的荷电状态,本文采用混合二阶RC模型和二阶斯特林插值滤波算法对锂电池的SOC值进行估计。首先对混合二阶模型的锂电池动态特性跟踪性能进行了研究,随后给出了一种基于二阶斯特林插值滤波器的锂电池SOC估计算法,并在安时积分法中加入不可用容量作为新的标准值。最后用实验数据与仿真结果进行了对比。仿真和实验的结果表明,该模型能很好地体现锂电池的动态特性,且二阶斯特林插值滤波算法有着比扩展卡尔曼滤波算法更好的估计精度,而且比起EKF能更准确的跟踪锂电池的非线性程度。  相似文献   

19.
针对未知噪声条件下在线估计锂电池荷电状态精度低的问题,提出了将无迹卡尔曼滤波算法与模糊推理相结合的模糊无迹卡尔曼滤波算法。为了验证算法的有效性,首先建立了适应于FUKF估计SOC的二阶电池模型,在此基础上,采用离线的参数辨识方法辨识模型中相应的参数并进行模型精确度验证,其次设计实验对比模糊无迹卡尔曼滤波方法与传统EKF、UKF方法的估算精度,实现FUKF方法精确度验证。实验结果表明在未知噪声条件下估算SOC,FUKF方法误差小于0.5%,EKF、UKF方法误差在0.5%~1%之间波动,FUKF方法较UKF方法具有收敛速度快、估算精度高的优点。  相似文献   

20.
针对单一滤波算法对动力电池荷电状态(SOC)预测估计精度有限的问题,分析并建立了二阶RC网络等效电路模型,进行了离线参数辨识,并验证了辨识结果的准确性。以该模型为基础,运用无迹卡尔曼粒子滤波(UKPF)算法对动力电池SOC的动态模型状态进行预测估计,以带可变遗忘因子的递推最小二乘法(VFFRLS)对动态模型参数进行辨识,两者互为输入输出,实现UKPF-VFFRLS算法的联合估计。仿真实验结果表明:相比原有单一滤波算法,UKPF-VFFRLS联合估计算法使得SOC平均误差降低至0.74%,均方根误差(RMSE)低至0.009 9,提高了SOC的预测估计结果精度,从而提升了能源消耗预判能力和电池使用效率。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号