共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
超级电容器电极材料纳米α-MnO2的制备及性能 总被引:7,自引:3,他引:7
用KMnO4和MnSO4水溶液作为原料,用液相沉淀法制备无定形α-MnO2·nH2O.对样品进行比表面积测定(BET)、XRD、SEM等测试.通过循环伏安法和恒流充放电测试研究了样品的电化学行为.合成的无定形α-MnO2·nH2O在0.5mol/L的Na2SO4电解液中,在0~0.9 V(vs.SCE)范围内,电流为10 mA,2 mV/s的扫描速度下的比电容可达126.4 F/g.无定形α-MnO2·nH2O是较好的超级电容器电极材料. 相似文献
3.
4.
5.
6.
7.
8.
9.
主要介绍了目前国内外研究MnO2作为电化学超级电容器电极材料的最新进展和几个主要研究动向;并简要介绍了研究电化学超级电容器的几种主要的表征手段。 相似文献
10.
11.
采用液相法制得菊花状形貌的纳米MnO2电极材料,并组装成对称型超级电容器。采用0.8V电压,在不同电流密度下分别对超级电容器进行了恒电流充放电测试,旨在研究正负极对超级电容器充放电性能的影响。结果发现,正负极的电荷储存机制不同,其中正极对电容器电压的影响起主要作用,在0.43~0.49V(vsHg/HgO)以及0.40~0.33V(vsHg/HgO)范围内发生了电化学反应,而负极则表现稳定。随着电流密度的增大,正极电压范围从0.54V下降到0.52V;负极电压范围则从0.26V增加到0.28V;正、负极以及电容器电阻均有所下降,超级电容器从4.29Ω下降到2.80Ω,正极从0.94Ω下降到0.76Ω,负极从1.30Ω下降到0.97Ω。超级电容器及电极的自放电分两部分进行,在高电位范围内由紧密层电荷快速扩散的线性放电速率变化以及在低电位范围内由分散层扩散决定的慢速线性放电速率变化。 相似文献
13.
14.
15.
16.
LiCoO2/AC复合电极作为超级电容器的电极材料 总被引:2,自引:0,他引:2
为提高活性炭电极的容量,对活性炭进行掺杂LiCoO2处理,由此制备了复合电极。采用循环伏安、恒流充放电、循环寿命试验、漏电流性能测试等方法对掺杂LiCoO2的复合电极/活性炭混合电容器的性能进行了测试,结果表明掺杂LiCoO2后复合电极/活性炭混合电容器的性能大大提高,当复合电极中LiCoO2的质量分数为70%时,混合电容器的比容量达到最大值,在1.0mA/cm2时比容量达39.55F/g,比未掺杂的活性炭电容器提高50.7%,充放电效率有所提高,且混合电容器的电阻和漏电流较小(8.7mA),经1500次循环后电容量仍保持在83%以上,仍远高于活性炭电容器。 相似文献
18.
19.