首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Metal oxide and supported-Pt catalysts were developed for complete oxidation of volatile organic compounds (VOCs) and other solvent-derived organic vapors (OVs) in air at relatively low temperatures. The goal for this work is to produce a simple, cost-effective technology for reducing the concentration of organic contaminants in air to acceptable levels before the air is released into the atmosphere or recirculated. Specific applications include ventilated work spaces for spray painting and engine maintenance, indoor air decontamination, dry cleaning, food processing, fume hoods, residential use, and solvent-intensive industrial processes. Catalyst powders and monolith-supported catalysts were screened for conversion of 1-butanol, toluene, and methyl ethyl ketone to carbon dioxide and water. The concentration of OVs in the feedstream was maintained at approximately 100 ppmv, and the space velocity was between 6,000 and 18,000 h?1. Metal oxide catalysts without Pt generated complete conversion of 1-butanol to CO2 at 150°C, 69% conversion at 100°C, and 15% conversion at 80°C. For toluene, complete conversion was achieved at 200°C, and greater than 75% conversion at 150°C. Addition of Pt to the metal oxide compositions typically lowered the temperature for a given OV oxidation rate by at least 20–50°C. Catalysts deposited onto standard commercial cordierite monoliths retained their composition and activity, and were stable in humid air, as well as nitrogen- and chlorine-containing OVs. However, the catalysts quickly deactivated in the presence of sulfur and phosphorus.  相似文献   

2.
Copper oxide and zirconia-supported copper oxide catalysts were tested for their catalytic activity for carbon monoxide and propylene oxidation reactions. The synthesized catalyst was supported by wet impregnation on zirconia. The higher activity of zirconia-supported catalyst compared to unsupported catalyst may be attributed to homogeneous and higher dispersion on zirconia, ionic oxygen carrying capacity of zirconia. Catalyst 10%?CuO/ZrO2 showed a best conversion efficiency of 90% at a temperature as low as 265°C for CO oxidation. T50 and T100 for propylene oxidation on zirconia-supported copper oxide were 392 and 450°C, respectively.  相似文献   

3.
Different carbon materials were tested as precursors for the production of CO2 adsorbents. The chemical modification of the surface of the prepared adsorbents was studied by means of three different approaches: impregnation with amines, electrophilic aromatic substitution, and heat treatment in the presence of ammonia. The samples were chemically characterized and the porous texture was evaluated from the N2 adsorption isotherms at ?196°C. The CO2 adsorption capacities of the adsorbents at 25 and 100°C were evaluated in a thermogravimetric analyzer. In general, the incorporation of basic nitrogen functionalities enhanced the CO2 capture capacities of the modified carbons, but this increase depended on the textural properties of the support and the surface modification methodology. CO2 adsorption capacities of up to 111?mg CO2/g at room temperature were attained. All the tested samples were completely regenerated when subjected to heat treatment at 100°C under inert atmosphere.  相似文献   

4.
Ceria nanotubes with high CO conversion activity by means of carbon nanotubes as removable templates in the simple liquid phase process were fabricated under moderate conditions. The pristine CNTs were first pretreated by refluxing in a 30% nitric acid solution at 140 ℃ for 24 h, then dispersed in an ethanolic Ce(NO3)3.6H2O solution with ultrasonic radiation at room temperature for 1 h. Under vigorous stirring, NaOH solution was added drop by drop into the above ethanolic solution until the pH value was 10. The product was collected and repeatedly washed with ethanol and on drying at 60 ℃, the CeO2/CNT composites were obtained. Then, the as-prepared composites were heated at 450 ℃ in an air atmosphere for 30 min to remove CNTs. The ceria nanotubes were characterized by X-Ray Diffraction (XRD), Transmission Electron Microscopy (TEM), and X-Ray Photoelectron Spectrum (XPS). The results showed that the ceria nanotubes were polycrystalline face-centered cubic phase and were composed of lots of dense cefia nanoparficles. The diameter of cefia nanotubes was about 40-50 nm. Catalytic activity of the product for CO oxidation was carded out at the region of 30-300 ℃ in a U-shaped quartz reactor with feeding about 0.15 g of the catalyst, which was loaded on Al2O3 carder. The inlet gas composition was 1.0% CO and 28% O2 with N2 as balance, and the rate of flow was kept at 40 ml/min. The catalytic products were analyzed by gas chromatography. The as-repared CeO2 nanotubes showed higher CO oxidation activity, which indicated that the morphology of ceria products affected the catalytic performance. The ceria nanotubes supported on Al2O3 demonstrated that conversion temperature for CO oxidation to CO2 was lower than that for bulk catalysts.  相似文献   

5.
Mixed liquor pH and temperature are two parameters that affect the growth rate of nitrifying bacteria and therefore the minimum solids retention time required to achieve nitrification. The objective of this study was to determine the consequence of low mixed liquor pH, and to determine if pH depression could be alleviated by recovering alkalinity through denitrification in a pure oxygen activated sludge system. The study was conducted at the University of Manitoba using laboratory scale, pure oxygen activated sludge reactors, fed with primary effluent. The results indicated that when denitrification was not included in the process, the concentration of CO2 in the headspace of the pure oxygen reactors increased to as high as 15% due to carbon oxidation and endogenous respiration. The high CO2 concentration in the headspace combined with low alkalinity caused by nitrification resulted in bulk mixed liquor pHs below 5.5. In order to maintain complete nitrification at a temperature of 24°C and a mixed liquor pH of 5.5, a solids retention time (SRT) of 12 days was required. In comparison, when denitrification was included in the process the pH of the mixed liquor was increased to 6.4 allowing for full nitrification at an SRT of 5.6 days at a temperature of 24°C. The increase in pH in the denitrification trains was attributed to three factors: recovery of alkalinity through the denitrification process, the conversion of influent carbon to CO2 in the anoxic reactor allowing the CO2 to escape to the atmosphere, and the recycle of mixed liquor super saturated with CO2 from the pure oxygen reactor to the anoxic reactor allowing the CO2 to escape to the open atmosphere. It was determined that the nitrifier growth rate at 12°C was approximately 50% of the rate measured at 24°C. At mixed liquor pHs between 6.0 and 6.3 at a temperature of 12°C, the specific nitrifier growth rate was between 0.12 and 0.15?d?1, while at 24°C, the specific nitrifier growth rate was between 0.25 and 0.30?d?1 at pHs ranging from 5.0 to 6.1  相似文献   

6.
Compacts made from pure wüstite and compacts doped with 2% MgO were annealed at 1000°C for 3 hrs in 50%CO‐CO2 gas mixtures. The annealed samples were isothermally reduced at 800‐1100°C in H2 gas. Selected samples were isothermally reduced at 1000°C with pure CO and 50%H2‐CO gas mixture to investigate the effect of gas composition on the reduction processes. The oxygen weight loss resulting from the reduction of the samples was recorded as a function of time. X‐ray diffraction (XRD), scanning electron microscopy (SEM), optical microscopy and porosity measurements were used to characterize the annealed and reduced samples. Magnesio‐wüstite (MgO·FeO) phase was formed during the annealing of MgO doped wüstite. The MgO·FeO in turn decreased the porosity of the annealed doped samples compared to pure wüstite compacts. The influence of temperature, gas composition and MgO content on the reduction behaviour and the morphology of the annealed samples was investigated. The values of the apparent activation energy were calculated from Arrhenius plots and correlated with the reduction mechanism. The reduction rate increased with reaction temperature. In doped compacts, the MgO·FeO phase was not completely reduced both at lower reduction temperature (800°C) and during reduction with pure CO. From the activation energy values, the initial reaction stage was controlled by the combined effect of chemical reaction and gas diffusion while solid state diffusion controlled the final stage of reduction. Morphologically, metallic iron was formed in different shape structures under the effect of MgO addition and reduction conditions.  相似文献   

7.
Over the past few years, the design and researchon fuel cells have been made a great development. Avariety of fuel cells for different applications has beenunder development[1,2]: solid polymer fuel cells(SPFC), also know as proton exchange …  相似文献   

8.
田春秋  邵坤 《冶金分析》2014,34(12):48-51
以3 mL硫酸-2 mL氢氟酸-2 mL过氧化氢为溶剂,采用4步升温微波消解技术对样品进行消解,设定灰化温度为1 500 ℃,原子化温度为2 700 ℃,建立了石墨炉原子吸收光谱法测定钛白粉中钒的分析方法。实验表明:试液中加入10 mL 0.5 g/L硝酸镁溶液作为基体改进剂可有效增强待测液的吸光度;方法线性范围为0~50 μg/L,方法检出限为0.01 μg/g。采用方法对钛白粉样品中的钒进行测定,结果与常规湿法消解电感耦合等离子体质谱法一致,相对标准偏差(RSD,n=11)为1.9%~3.2%,回收率为98%~100%。  相似文献   

9.
The reduction behaviour of hematite compacts by H2-CO gas mixtures was investigated at 1073-1223 K. The total porosity, pore size distribution and surface area of the compact was measured using mercury pressure porosimeter. The reduction tests were carried out using Cahn balance. The reduction behaviour could not be described in terms of a single rate-determining step; the reduction process was initially controlled by the chemical reaction at the oxide/iron interface, controlled by the intraparticle diffusion through the reduced layer towards the end of reduction, and the mixed control, in between. Over the whole range, the reduction rate decreased with CO content in the gas mixture. The chemical reaction rate constants were two to three times higher for H2 reduction than those of CO reduction, and the effective diffusivities of H2 reduction were three to four times higher than those of CO reduction. Values of activation energy for chemical reaction were found to be 19.8-42.1 kJ/mol depending on the gas compositions; 100% CO showing the lowest.  相似文献   

10.
A novel liquid-impregnated clay sorbent [R. V. Siriwardane, U.S. Patent No. 6,908,497 B1 (2003)] was developed for carbon dioxide (CO2) removal in the temperature range of ambient to 60°C for both fixed-bed and fluidized-bed reactor applications. The sorbent is regenerable at 80–100°C. A 20-cycle test conducted in an atmospheric reactor with simulated flue gas with moisture demonstrated that the sorbent retains its CO2 sorption capacity with CO2 removal efficiency of about 99% during the cyclic tests. The sorbents suitable for fluidized-bed reactor operations showed required delta CO2 capacity requirements for sorption of CO2 at 40°C and regeneration at 100°C. The parameters such as rate of sorption, heat of sorption, minimum fluidization velocities, and attrition resistance data that are necessary for the design of a reactor suitable for capture and regeneration were also determined for the sorbent. A 20-cycle test conducted in the presence of flue-gas pollutant sulfur dioxide—SO2 (20 parts per million)—indicated that the sorbent performance was not affected by the presence of SO2.  相似文献   

11.
高温下钢液中会生成大量的非金属夹杂物,对钢的浇铸工艺和钢产品性能产生不利影响。通过研究高钛钢与夹杂物的界面润湿行为,以期为高钛钢成分设计以及夹杂物的控制研究提供理论依据。以不同钛含量的钢样品以及Al2O3和MgAl2O4为研究对象,采用改进后的座滴法进行高温润湿试验得到表观接触角;通过电子探针对样品界面的微观形貌和元素进行表征,并结合热力学计算对钢与夹杂物的界面润湿行为进行解释。当钢中钛质量分数分别为0.01%、0.31%和0.68%时,Al2O3/钢润湿系统的表观接触角分别为96°、90°和112°,润湿后的样品界面均匀,无新反应相的存在和明显的元素富集。MgAl2O4/钢润湿系统的表观接触角分别为113°、106°和130°;低钛含量(w(Ti)=0.01%)时,界面无反应相生成,高钛含量时,界面存在不连续的反应层,为MgS、MgO、Ti4S2C2  相似文献   

12.
Kinetic study of the chlorination of titanium dioxide (rutile and anatase) was carried out in a fixedbed reactor at temperature ranging from 800 °C to 1000 °C and normal pressure. In our experiment, titanium dioxide powder and gaseous chlorine with carbon or carbon monoxide as reductant were used. The products of the reaction are all in gaseous phase under the temperatures and pressure studied. With CO as reductant, reaction is of noncatalytic gas-solid nature and experimental data fit the shrinking core model. When using C as reductant, solid-solid reaction is involved. Reactivity is highly enhanced by solid carbon and it is concluded that an activated C-TiO2-Cl complex contributes to the enhanced reactivity. A reaction model based on phase boundary control applies to the experimental data. Thermodynamic analysis supports the experimental observation.  相似文献   

13.
A series of pre-reduced LaMn1-xCuxO3 (0≤x<1) catalysts for methanol synthesis from CO2 hydrogenation were prepared by a sol-gel method. The catalytic performances were strongly dependent on the copper content. XRD investigation revealed that the single perovskite structure could be preserved after being reduced, when the substitution for Mn by Cu was less than 50%. The Cu-doped (x=0.5) LaMnO3 was much more active than the other catalysts for reaction, showing CO2 conversion up to 11.33% and methanol selecti...  相似文献   

14.
Carol Lake hematite particles were reduced to magnetite at 600 and 1000 °C using CO + CO2 mixtures. The rate of reduction was measured in gravimetric tests and structural changes followed by optical microscopy, BET surface area, and mercury porosimetry. At 600 °C, the reduction of each grain approximately followed the shrinking core model, and fine pores were created in the magnetite produced. The volume of pores was constant at a porosity level of 8.8 pct, but the average pore size depended on the rate of oxygen removal, and finer pores were obtained under conditions of fast reduction. The reaction followed a different path at 1000 °C and proceeded by sideway thickening of a finite number of magnetite lamellae formed parallel to each other in each grain. Reduced particles showed reentrant surface depressions and cracks, but no porosity. Reaction mechanisms were postulated to relate these structural features to the progress of the reaction. Examination of the reaction steps indicated that the separation of oxygen from solid surfaces was likely to be the rate determining step at both temperatures. This was reflected in rate measurements by a strong dependence on CO pressure while the influence of oxygen activity (as represented by CO2/CO ratio) was of secondary importance at 1000 °C and negligible at 600 °C. A detailed analysis of reaction rates could not be made, however, because the particles were of a wide range of sizes and their structure changed during reduction. formerly Research Student at Imperial College, London, formerly Professor of Metallurgy, Imperial College, London,  相似文献   

15.
A series of Ce1-xFexO2 (x=0, 0.2, 0.4, 0.6, 0.8, 1) complex oxide catalysts were prepared using the coprecipitation method. The catalysts were characterized by means of XRD and H2-TPR. The reactions between methane and lattice oxygen from the complex oxides were investigated. The characteristic results revealed that the combination of Ce and Fe oxide in the catalysts could lower the temperature necessary to reduce the cerium oxide. The catalytic activity for selective CH4 oxidation was strongly influenced by dropped Fe species. Adding the appropriate amount of Fe2O3 to CeO2 could promote the action between CH4 and CeO2. Dispersed Fe2O3 first returned to the original state and would then virtually form the Fe species on the catalyst, which could be considered as the active site for selective CH4 oxidation. The appearance of carbon formation was significant and the oxidation of carbon appeared to be the rate-determining step; the amounts of surface reducible oxygen species in CeO2 were also relevant to the activity. Among all the catalysts, Ce0.6Fe0.402 exhibited the best activity, which converted 94.52% of CH4 at 900 ℃.  相似文献   

16.
Aqueous precipitation and deposition-precipitation method were used to prepare CeO2 supports and Au/CeO2 catalysts, respectively. The effect of preparation condition of support on the catalyst activity was investigated. The catalytic combustion of HCHO was considered as the probe reaction for comparing the catalyst activity. The BET, X-ray diffraction, X-ray photoelectron spectroscopy (XPS), and reduction (TPR) were carried out to analyze the influence factor on the catalysts activity. The results showed that the addition of dispersant and use of microwave in the support preparation procedure could be beneficial for enhancing the interaction of supports and gold species and thus improved the catalytic activity. The total conversion temperature for HCHO was 146 ℃ over AC400. With the modification during supports preparation process, the catalytic activity increased with total conversion temperature decreasing to 98 ℃. The results of XPS indicated that Au^0 and Au^+1 species coexisted in these catalysts and the activity of catalyst correlated with Au^+1/Au^0 ratio. Temperature-programmed reduction results demonstrated that the reduction peak appeared between 100-170 ℃ with the inducing of gold. The dependence of activity on the reduction peak temperature implied that ionic gold was catalytic activity component for HCHO oxidation.  相似文献   

17.
基于Rh在废均相催化剂中的赋存状态,研发出绿色解离Rh–P化学键及Rh的络合浸出新技术,实现了Rh的绿色高效浸出,杜绝了传统废均相催化剂焚烧–碎化–酸浸工艺流程长、污染严重、回收率低等问题。首先通过蒸馏将低熔点有机物去除,然后采用H2O2将均相铑膦络合物中的Rh+氧化成Rh3+,减少有机配体对Rh的束缚;同时Rh3+与Cl–络合形成水溶性的RhCl63–进入溶液中。研究了蒸馏温度、Cl–浓度、H2O2用量、H+浓度、反应时间等对Rh的回收率影响,并采用响应曲面法优化了Cl–浓度、H2O2用量和反应时间等工艺参数。结果表明:各参数对Rh回收率的影响大小为:H2O2用量>Cl–浓度>反应时间,优化的工艺参数为:蒸馏温度260 ℃、Cl–浓度3.0 mol?L–1、H2O2用量为废均相催化剂的37%(体积分数)、H+浓度1.0 mol?L–1、反应时间4.5 h,Rh的回收率达到98.22%。最后,采用分光光度法研究了Rh的氧化–络合动力学行为,表明该反应的活化能为39.24 kJ?mol–1,属于化学反应控速。   相似文献   

18.
Sintering during calcination/carbonation may introduce substantial economic penalties for a CO2 looping cycle using limestone/dolomite-derived sorbents. Here, cyclic carbonation and calcination reactions were investigated for CO2 capture under fluidized bed combustion (FBC) conditions. The cyclic carbonation characteristics of CaCO3-derived sorbents were compared at various calcination temperatures (700–925°C) and different gas stream compositions: pure N2 and a realistic calciner environment where high concentrations of CO2>80–90% (and the presence of SO2) are expected. The conditions during carbonation employed here were 700°C and 15% CO2 in N2 and 0.18% or 0.50% SO2 in selected tests, i.e., typically expected for a carbonator. Up to 20 calcination/carbonation cycles were conducted using a thermogravimetric analyzer (TGA) apparatus. Three Canadian limestones were tested: Kelly Rock, Havelock, and Cadomin, using a prescreened particle size range of 400–650?μm. In addition, calcined Kelly Rock and Cadomin samples were hydrated by steam and examined. Sorbent reactivity was reduced whenever SO2 was introduced to either the calcining or carbonation streams. The multicyclic capture capacity of CaO for CO2 was substantially reduced at high concentrations of CO2 during the sorbent regeneration process and carbonation conversion of the Kelly Rock sample obtained after 20?cycles was only 10.5%. Hydrated sorbents performed better for CO2 capture, but also showed significant deterioration following calcination in high CO2 gas streams. This indicates that high CO2 and SO2 levels in the gas stream lead to lower CaO conversion because of enhanced sintering and irreversible formation of CaSO4. Such effects can be reduced by separating sulfation and carbonation and by introducing steam to avoid extremely high CO2 atmospheres, albeit at a higher cost and/or increased engineering complexity.  相似文献   

19.
Y2O3-Al2O3 with different mole ratios of Y:Al were prepared by co-precipitation method. Catalysts Ni/Y2O3, Ni/Al2O3 and Ni/ Y2O3-Al2O3 were prepared by impregnation method. The result of BET showed that Al2O3 with relative high surface area was in favor of Ni distribution, whilst the TPR test demonstrated that composite support had appropriate synergistic effect between active constituent and sup-port, and NiO could be reduced more easily than loaded on the single support. H2-TPD test indicated that the catalyst NYA11 had lots of ac-tivity sites where H could be desorbed easily, which led to hydrogen-rich production over the catalyst. Composite support catalysts exhibited high activity for ethanol steam reforming (SRE), and the supported catalyst with composite of 1:1 mole ratio of Y:Al exhibited the optimum catalytic properties for SRE. Ethanol could be completely converted over catalyst NYA11 even at 450 °C, and there had no inactivation after 60 h continuous reaction, hydrogen yield appeared maximum 35.9% at 400 °C, and tended to increase with increasing H2O/EtOH molar ratio and feed flow rate.  相似文献   

20.
In this work,tungsten oxide with different concentrations(0,0.4 at%,2.0 at% and 3.2 at%) was introduced to the ceria nanorods via a deposition-precipitation(DP) approach,and copper species of ca.10 at% were sequentially anchored onto the modified ceria support by a similar DP route.The aim of the study was to investigate the effect of the amount of tungsten oxide(0,0.4 at%,2.0 at%,and 3.2 at%) modifier on the copper-ceria catalysts for CO oxidation reaction and shed light on the structure-activity relationship.By the aids of multiple characterization techniques including N_2 adsorption,high-resolution transmission electron microscopy(HRTEM),powder X-ray diffraction(XRD),X-ray absorption fine structure(XAFS),and temperature-programmed reduction by hydrogen(H_2-TPR) in combination with the catalytic performance for CO oxidation reaction,it is found that the copper-ceria samples maintain the crystal structure of the fluorite fcc CeO_2 phase with the same nanorod-like morphology with the introduction of tungsten oxide,while the textural properties(the surface area,pore volume and pore size) of ceria support and copper-ceria catalysts are changed,and the oxidation states of copper and tungsten are kept the same as Cu~(2+)and W~(6+)before and after the reaction,but the introduction of tungsten oxide(WO_3)significantly changes the metal-support interaction(transfer the CuO_x clusters to Cu-[O_x]-Ce species),which delivers to impair the catalytic activity of copper-ceria catalysts for CO oxidation reaction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号