首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Organoclays, clays modified by cationic surfactants, for engineering applications have recently drawn great attention because of their high organic removal capacity. In this study, the potential use of organoclays with soil-bentonite admixtures as waste containment barriers is investigated by experimental tests such as batch equilibrium sorption studies, compaction tests, and hydraulic conductivity tests. Sorption isotherms of total organic carbon (TOC), a gross organic term, by five different types of soil admixtures are nonlinear. The soil specimen with more organoclays exhibits higher organic sorption capacity and a larger retardation factor. The specimens with 20% by dry weight of bentonite have higher optimum water content and plasticity. With the addition of bentonite in the soil material consisting of completely decomposed volcanic rock (CDV) (natural soils) and organoclays, the hydraulic conductivity to leachate decreases from about 10?7 to 10?8 cm∕s. This indicates that the presence of bentonite in the admixtures is important in reducing hydraulic conductivity.  相似文献   

2.
The hydraulic conductivity (k) of specimens from columns containing initially dry sands mixed with bentonite slurries was measured. The mixed specimens represented a range in void ratios (0.672 ≤ e ≤ 3.94) and bentonite contents (0.61% ≤ BC ≤ 7.65%, by dry weight). The measured k values, which ranged from 2.4×10?7?cm/s to 6.8×10?4?cm/s, correlated poorly with the total void ratio (e) of the specimens, due to the complicating effect of the bentonite in the sand-bentonite slurry mixtures. However, the measured k values correlated better with the void ratio of the bentonite (eb), which is consistent with the results of previous studies involving permeation of compacted bentonite and sand-bentonite specimens, even though the range in values of eb in this study (42.5 ≤ eb ≤ 127) was much higher than that previously reported. The relatively large range in eb values for the sand-bentonite slurry mixtures was also consistent with the relatively large range in measured k values, which are about one to seven orders of magnitude higher than values of k commonly reported for compacted sand-bentonite mixtures, despite similar bentonite contents. In terms of bentonite content, addition of more than 3% bentonite via slurry injection and mixing with the sands was successful in reducing the k of the unmixed sands (9.4×10?3?cm/s ≤ k ≤ 5.4×10?2?cm/s) by as much as four orders of magnitude to values less than 1.0×10?6?cm/s.  相似文献   

3.
Diffusion coefficients and retardation factors of two metal cations (Cd2+ and Pb2+) were measured for a compacted Brazilian saprolitic soil derived from gneiss, aiming to assess its geoenvironmental performance as a liner for waste disposal sites. This soil occurs extensively all over the country in very thick layers, but has not been used in liners because of its hydraulic conductivity, higher than 10?9?m/s when compacted at optimum water content of standard Proctor energy, but which can be reduced by means of appropriate compaction techniques or additives. Batch, column, and diffusion tests were carried out with monospecies synthetic solutions at pH 1, 3, and 5.5. Measured diffusion coefficients varied between 0.5 and 4×10?10?m2/s. Retardation factors show that cadmium, a very mobile cation, is not adsorbed at pH 1 but is significantly retained at pH 3 and pH 5.5, whereas lead is retained at all tested pH values though slightly at pH 1. Estimated retardation factors from batch tests were 1.3–2.3 times those resulting from column tests and at its highest when obtained by diffusion tests; whereas batch tests allow a more complete exposure of the soil grains to the solution, time-dependent nonspecific adsorption may take longer to occur. The importance of contact time was observed and should be considered in further investigations. Its significant retention of metals suggests a promising utilization of this soil as a bottom liner for wastes landfills.  相似文献   

4.
Foundry Green Sands as Hydraulic Barriers: Laboratory Study   总被引:2,自引:0,他引:2  
A laboratory testing program was conducted to assess the use of foundry sands from gray iron foundries, typically called green sands, as hydraulic barrier materials. Foundry green sands are mixtures of fine uniform sand, bentonite, and other additives. Specimens of foundry sand were compacted in the laboratory at a variety of water contents and compactive efforts and then permeated in rigid-wall and flexible-wall permeameters to define relationships between hydraulic conductivity, compaction water content, and dry unit weight. Additional tests were conducted to assess how hydraulic conductivity of compacted foundry sand is affected by environmental stresses such as desiccation, freeze-thaw, and chemical permeation. Results of the tests show that the hydraulic conductivity of foundry sand is sensitive to the same variables that affect hydraulic conductivity of compacted clays (i.e., compaction water content, and compactive effort). However, hydraulic conductivities <10?7 cm∕s can be obtained for many foundry sands using a broad range of water contents and compactive efforts, including water contents dry of optimum and at lower compactive effort. The hydraulic conductivity of foundry sand was generally unaffected by freeze-thaw, desiccation, or permeation with 0.1 N salt solution or municipal solid waste leachate, but was incompatible with acetic acid (pH = 3.5). Hydraulic conductivity of foundry sands correlates well with bentonite content and liquid limit, with hydraulic conductivity less than 10?7 cm∕s being achieved for bentonite content ≥6% and∕or liquid limit >20.  相似文献   

5.
The performance of a soil–bentonite barrier material as a sorbent for heavy metals was investigated in the laboratory using an influent containing 20 mg/L of Pb2+ at a pH of 5. The target parameters were the hydraulic conductivity of the soil–bentonite mix and the difference between Pb+2 concentrations in the influent and effluent. A hydraulic conductivity of 1.0×10?8?cm/s was achieved, the mixture was found to meet common regulatory specifications for hazardous waste containment. After four pore volumes of flow through specimens placed in a column, no Pb2+ was detected in the effluent. Sorption was verified through acid extraction and identification of Pb+2 on barrier sample cross sections using microanalysis of specimen slices with a scanning electron microscope and the associated energy dispersive x-ray spectrometry. Energy dispersive x-ray spectrometry spectra indicated that the Pb2+ partitioned selectively to the bentonite fraction of the mix. The results confirm the ability of this mixture of soil–bentonite to function as an effective barrier for aqueous Pb2+ solution. This method of microanalysis appears to have promise as an effective tool for assessing relative affinity of contaminants for specific mineralogical constituents of a barrier mixture and may have applications in sorption performance assessments of other multicomponent barrier systems. If each barrier material is tested separately, the effects of the texture of the mix on sorption and hydraulic characteristics of the mix cannot be effectively assessed.  相似文献   

6.
The interactions between acid mine drainage (AMD) and three tropical clayey soils have been studied through hydraulic conductivity and batch sorption/dissolution testing. After 19–24 pore volumes of AMD flow through the soils, the measured final hydraulic conductivity ranged between 1.1×10?11 and 3.3×10?11?m/s. The pH, electrical conductivity, and solute breakthrough curves obtained suggested the soils had low acid-buffering capacities. Also, several chemical species were released from the soils due to AMD attack of soil grains and mineral. The batch tests revealed high dissolution of species such as sodium, cobalt, and sulfate from the soils by AMD. The results also indicated dissolution of metals from soil constituents, desorption of chemical species, and transformation and dissolution of soil minerals due to AMD attack. The results of the study showed that, in general, the soils were not effective in attenuating contaminants present in the AMD. Thus, they may not be used alone to construct liners for acid-generating waste mine containment facilities.  相似文献   

7.
Membrane Behavior of Compacted Clay Liners   总被引:2,自引:0,他引:2  
The containment function of clay barriers used for waste containment applications (e.g., landfills) can be enhanced if such clays exhibit membrane behavior or the ability to restrict the migration of solutes (e.g., contaminants). In this regard, compacted specimens of a locally available natural clay known as Nelson Farm Clay (NFC), as well as NFC amended with 5% (dry weight) sodium bentonite, were evaluated for hydraulic conductivity, k, and the potential for membrane behavior. The membrane efficiencies of specimens of both soils compacted such that k was less than 10?7?cm/s were measured by establishing steady salt (KCl) concentration differences, ?ΔCo, ranging from 3.9 to 47 mM across the specimens in a flexible-wall cell under closed-system boundary conditions. The measured membrane efficiency for the unamended NFC was negligible (i.e., ≤ 1.4%), even though the k was suitably low (i.e., k<10?7?cm/s). In contrast, compacted specimens of the bentonite amended NFC exhibited not only lower k but also significant membrane behavior, with membrane efficiencies as high as 97.3% for ?ΔCo of 3.9-mM KCl. The results suggest that natural clays typically suitable for use as compacted clay liners (CCLs) are not likely to behave as semipermeable membranes unless the clay is amended with bentonite or the clay is inherently rich in high swelling clay minerals (e.g., sodium smectite). The potential benefit resulting from membrane behavior in a CCL constructed with the bentonite amended NFC is illustrated analytically in terms of liquid flux.  相似文献   

8.
Movement of volatile organic compounds (VOCs) through compacted clay liners was investigated using laboratory-scale column and tank tests. Hydraulic conductivity of the compacted clay was not significantly impacted by the introduction of VOCs in concentrations up to 20 mg∕L. Soil-water partition coefficients of the seven VOCs tested had a strong logarithmic relationship with the octanol-water partition coefficient. Partition coefficients from batch tests were in good agreement with those measured directly on soil samples at the termination of the column∕tank tests. The VOCs were degraded in the clay, with estimated half-lives ranging from 2 to 116 days. Mechanical dispersion was not significant in the range of the hydraulic conductivities of the test specimens (i.e., <10?7 cm∕s). Effective molecular diffusion coefficients were mostly in 10?6 cm2∕s and generally decreased with increasing aqueous solubility. Mass transport parameters of VOCs in clay liners can be estimated from laboratory batch tests and properly prepared small-scale column tests. However, accounting for degradation of VOCs and minimizing the number of transport parameters that are simultaneously estimated from a single response-time record are important considerations for accurate determination of transport parameters.  相似文献   

9.
Landfill leachate, often having high concentrations of metal cations, anions, and organic compounds, presents a great threat to nearby groundwater. Due to negative charges on soil particles, regular clay liners cannot effectively retard the movement of anionic contaminants such as chromate. In this paper, a natural illite was modified by cationic surfactants with different chain lengths and tested for its chromate removal efficiency. When the surfactant tail group is relatively short and the solution critical micelle concentration is high, the sorbed surfactant molecules form a monolayer on illite, resulting no chromate sorption by the organo-illite. As the chain length of surfactant tail group increases, the critical micelle concentration reduces and the surfactant molecules sorb as admicelles on illite with the surfactant sorption exceeding the illite’s cation-exchange capacity. Such admicelle modification makes the organoclay capable of retaining chromate instantaneously and retarding the movement of chromate by 1–2 orders of magnitude. The illite’s hydraulic conductivity showed a slight increase after surfactant modification, from 1×10?7 to 8×10?7?cm/s, probably due to reduced packing density after modification. Chromate breakthrough data from column transport experiments were well described by a one-dimensional advection-dispersion model that incorporated Langmuir sorption.  相似文献   

10.
Electrokinetic remediation is an emerging technique that can be used to remove metals from saturated or unsaturated soils. In unsaturated soils, control of the medium's water content is essential. Previously used electrode designs have caused detrimental soil wetting due to excess electroosmotic flow out of ceramic-encased anodes. We tested a method to reverse the electroosmotic flow at the anode by treating the ceramic casing with the cationic surfactant hexadecyltrimethylammonium (HDTMA). Laboratory tests showed the untreated ceramic had an electroosmotic permeability of 2.4 × 10?5 cm2 V?1 s?1. Ceramic treated with HDTMA had an electroosmotic permeability of ?1.3 × 10?5 cm2 V?1 s?1. Under an applied electric potential, electroosmotic flow was reversed in the HDTMA-treated ceramic, indicating a reversed zeta potential due to formation of an HDTMA bilayer on the ceramic surface. Field tests conducted over a 6-month period showed negligible water loss from HDTMA-treated ceramic (0.03 L h?1) compared to untreated ceramics (up to 6 L h?1). The results indicated that a surfactant treatment to the anode ceramic casing can greatly improve the application of electrokinetics in unsaturated environments.  相似文献   

11.
Effect of Wet-Dry Cycling on Swelling and Hydraulic Conductivity of GCLs   总被引:2,自引:0,他引:2  
Atterberg limits, free swell, and hydraulic conductivity tests were conducted to assess how wet-dry cycling affects the plasticity and swell of bentonite, and the hydraulic conductivity of geosynthetic clay liners (GCLs) hydrated with deionized (DI) water (pH 6.5), tap water (pH 6.8), and 0.0125-M CaCl2 solution (pH 6.2). The plasticity of bentonite hydrated with DI water increased during each wetting cycle, whereas the plasticity of bentonite hydrated with tap water and CaCl2 decreased during each wetting cycle. Wet-dry cycling in DI water and tap water had little effect on swelling of the bentonite, even after seven wet-dry cycles. However, swelling decreased dramatically after two wetting cycles with CaCl2 solution. Hydraulic conductivity of GCL specimens remained low during the first four wetting cycles (~1 × 10?9 cm∕s). However, within five to eight cycles, the hydraulic conductivity of all specimens permeated with the 0.0125-M CaCl2 solution increased dramatically, to as high as 7.6 × 10?6 cm∕s. The hydraulic conductivity increased because cracks, formed during desiccation, did not fully heal when the bentonite rehydrated. In contrast, a specimen continuously permeated for 10 months with the 0.0125-M CaCl2 solution had low hydraulic conductivity (~1 × 10?9 cm∕s), even after eight pore volumes of flow.  相似文献   

12.
Flexible-wall permeability tests and rigid-wall consolidation/permeability tests were performed to evaluate the hydraulic conductivity and compressibility of a model soil-bentonite (SB) backfill amended with granular activated carbon (GAC) or powdered activated carbon (PAC). The tests were performed as part of an assessment of enhanced SB backfill with improved attenuation capacity for greater longevity of barrier containment performance. Backfill specimens containing fine sand, 5.8% sodium bentonite, and GAC or PAC (0, 2, 5, and 10% by dry weight) were prepared to target slumps of 125±12.5?mm. Hydraulic conductivity (k) and compressibility of backfill test specimens were measured in consolidometers as a function of effective stress, σ′ (24 ? σ′ ? 1,532?kPa), whereas flexible-wall k was measured for backfill specimens consolidated to σ′ = 34.5?kPa. The results indicate that addition of GAC has little impact on the hydraulic and consolidation properties of the backfill, whereas addition of PAC causes a decrease in k and consolidation coefficient (cv) and a slight increase in compression index (Cc). Differences in behavior between GAC-amended backfills and PAC-amended backfills are attributed primarily to differences in GAC and PAC particle size.  相似文献   

13.
Hydraulic Conductivity of MSW in Landfills   总被引:1,自引:0,他引:1  
This paper presents a laboratory investigation of hydraulic conductivity of municipal solid waste (MSW) in landfills and provides a comparative assessment of measured hydraulic conductivity values with those reported in the literature based on laboratory and field studies. A series of laboratory tests was conducted using shredded fresh and landfilled MSW from the Orchard Hills landfill (Illinois, United States) using two different small-scale and large-scale rigid-wall permeameters and a small-scale triaxial permeameter. Fresh waste was collected from the working phase, while the landfilled waste was exhumed from a borehole in a landfill cell subjected to leachate recirculation for approximately 1.5 years. The hydraulic conductivity tests conducted on fresh MSW using small-scale rigid-wall permeameter resulted in a range of hydraulic conductivity 2.8×10?3–11.8×10?3?cm/s with dry unit weight varied in a narrow range between 3.9–5.1?kN/m3. The landfilled MSW tested using the same permeameter produced results between 0.6×10?3–3.0×10?3?cm/s for 4.5–5.5?kN/m3 dry unit weights. The hydraulic conductivity obtained from large-scale rigid-wall permeameter tests decreased with the increase in normal stress for both fresh and landfilled waste. The hydraulic conductivity for fresh MSW ranged from 0.2 cm/s for 4.1?kN/m3 dry unit weight (under zero vertical stress) and then decreased to 4.9×10?5?cm/s for 13.3?kN/m3 dry unit weight (under the maximum applied normal stress of 276 kPa). The hydraulic conductivity of the landfilled MSW decreased from 0.2 cm/s to 7.8×10?5?cm/s when the dry unit weight increased from 3.2 to 9.6?kN/m3. The results clearly demonstrated that the hydraulic conductivity of MSW can be significantly influenced by vertical stress and it is mainly attributed to the increase in density leading to low void ratio. In small-scale triaxial permeameter, when the confining pressure was increased from 69 to 276 kPa the hydraulic conductivity decreased from approximately 10?4?to?10?6?cm/s, which is much lower than those determined from rigid-wall permeameter tests. The published field MSW hydraulic conductivities are found to be higher than the laboratory results. Landfilled MSW possesses lower hydraulic conductivity than fresh MSW due to increased finer particles resulting from degradation. The decreasing hydraulic conductivity with increasing dry unit weight is expressed by an exponential decay function.  相似文献   

14.
This study compares electrocoagulation and chemical precipitation for heavy metals removal from acidic soil saline leachate (SSL) at the laboratory pilot scale. The electrocoagulation process was evaluated via an electrolytic cell [12 cm (width)×12 cm (length)×19 cm (depth)] using mild steel electrodes (10 cm width×11 cm high), whereas chemical precipitation was evaluated using either calcium hydroxide [Ca(OH)2] or sodium hydroxide (NaOH). By comparison with chemical precipitation at a pH varying between 7 and 8, electrocoagulation was more effective in removing metals from SSL having a relatively low contamination level (124?mg?Pb/L and 38?mg?Zn/L). For SSL enriched with different heavy metals (each concentration of metals was initially adjusted to 100 mg/L) and treated at a pH lower than 8.5, with the exception of Cd, the residual metal concentrations at the end of the experiments were below the acceptable level recommended for effluent discharge in urban sewage works (less than 4 mg/L of each residual metal concentration was recorded) using electrocoagulation, contrary to chemical precipitation using NaOH (more than 15 mg/L of each residual metal concentration was recorded). By comparison, chemical precipitation using Ca(OH)2 was effective in reducing Cr, Cu, Ni, and Zn under the permissive level, but not for Cd and Pb. However, both chemical precipitation processes needed to be operated at higher pH values (around 10.0) to be more effective in reducing metals from SSL and, therefore, required a pH adjustment of the effluent before discharge, whereas electrochemical treatment had a practical advantage of producing an effluent having a pH close to the neutral value and suitable for stream discharge in the receiving water. On the other hand, electrocoagulation was also found to be very efficient for removing Pb from very contaminated solutions (250–2,000 mg?Pb/L). At least 94% of Pb was removed regardless of the initial Pb concentration in the SSL. Electrochemical coagulation involves a total cost varying from 8.67 to 13.00 $/tds, whereas 0.84 to 16.73 $/tds is recorded using chemical precipitation. The cost included only energy consumption, chemicals consumption, and metallic sludge disposal.  相似文献   

15.
Paper clay has several properties that make its use in vertical barriers very promising. In this paper the characteristics of two paper sludges (which will also be referred to as paper clays) one from the Erving Paper Company and one from the International Paper Company are considered. To determine the feasibility of paper clay for heavy metal attenuation, batch tests, column tests, hydraulic conductivity tests, and pressure filtration tests were performed. Batch testing showed that the metal, the distribution coefficient (Kd) ranged from as low as 0.002 L/g for manganese to as high as 6.7 L/g for lead in International paper clay. In the Erving paper clay the Kd ranged from 0.007 L/g for manganese to 1.9 L/g for cadmium, while the International paper clay Kd ranged from 0.002 L/g for manganese to 6.7 L/g for lead. Chemisorption was established as the predominant metal binding mechanism in both clays with the only exceptions being manganese adsorption on International paper clay that indicated a constant partitioning, and copper and lead on Erving paper clay that indicated constant partitioning and cooperative adsorption, respectively. Both hydraulic conductivity and pressure filtration tests revealed permeabilities ranging from 10?5 to 10?7?cm/s. Chloride testing showed that the coefficient of hydrodynamic dispersion (D) within paper clay is on the order of 10?7?cm2/s.  相似文献   

16.
This paper presents an experimental investigation of the effect of clay consolidation on parameters that govern the advective-dispersive transport of an inorganic solute. Batch, diffusion, dispersion, and solute transport tests were conducted using kaolinite clay and dilute solutions of potassium bromide (KBr). Batch tests produced the highest levels of K+ sorption and indicated that equilibrium sorption was achieved in approximately 10–30 min. The increase in sorption observed in the batch tests, as compared to the dispersion or solute transport tests, reflects the significantly lower solids-to-solution ratio and more efficient mixing process. By comparison, kaolinite consolidation had little effect on sorption due to the relatively small change in porosity. Values of hydrodynamic dispersion coefficient (Dh), effective diffusion coefficient (D?), and apparent tortuosity factor decreased with decreasing porosity. Values of D? obtained for Br? were generally larger than for K+, whereas Dh values for Br? were significantly smaller than for K+. Values of longitudinal dispersivity (α) were larger for K+ than Br? and showed no clear trend with decreasing void ratio. In general, the experimental results suggest that changes in D? and Dh should be taken into account during clay consolidation whereas the sorption isotherm and α may be considered as unchanged during the consolidation process.  相似文献   

17.
A field-scale compacted soil liner was constructed at the University of Illinois at Urbana-Champaign by the U.S. Environmental Protection Agency (USEPA) and Illinois State Geological Survey in 1988 to investigate chemical transport rates through low permeability compacted clay liners (CCLs). Four tracers (bromide and three benzoic acid tracers) were each added to one of four large ring infiltrometers (LRIs) while tritium was added to the pond water (excluding the infiltrometers). Results from the long-term transport of Br? from the localized source zone of LRI are presented in this paper. Core samples were taken radially outward from the center of the Br? LRI and concentration depth profiles were obtained. Transport properties were evaluated using an axially symmetric transport model. Results indicate that (1) transport was diffusion controlled; (2) transport due to advection was negligible and well within the regulatory limits of ksat ? 1×10?7?cm/s; (3) diffusion rates in the horizontal and vertical directions were the same; and (4) small positioning errors due to compression during soil sampling did not affect the best fit advection and diffusion values. The best-fit diffusion coefficient for bromide was equal to the molecular diffusion coefficient multiplied by a tortuosity factor of 0.27, which is within 8% of the tortuosity factor (0.25) found in a related study where tritium transport through the same liner was evaluated. This suggests that the governing mechanisms for the transport of tritium and bromide through the CCL were similar. These results are significant because they address transport through a composite liner from a localized source zone which occurs when defects or punctures in the geomembrane of a composite system are present.  相似文献   

18.
膨润土本身即为抗渗性能较好的材料,但改性后的膨润土有着更强的污染物附着能力,本实验中重点考虑其抗渗性能,对比研究了无机和有机改性膨润土与未改性膨润土的渗透性能,可知未改性膨润土在垃圾渗滤液的作用下渗透系数可达到8.52×10^10cm/s。  相似文献   

19.
Samples of geosynthetic clay liners (GCLs) from four landfill covers were tested for water content, swell index, hydraulic conductivity, and exchangeable cations. Exchange of Ca and Mg for Na occurred in all of the exhumed GCLs, and the bentonite had a swell index similar to that for Ca or Mg bentonite. Hydraulic conductivities of the GCLs varied over 5 orders of magnitude regardless of cover soil thickness or presence of a geomembrane. Hydraulic conductivity was strongly related to the water content at the time of sampling. Controlled desiccation and rehydration of exhumed GCLs that had low hydraulic conductivity (10?9?to?10?7?cm/s) resulted in increases in hydraulic conductivity of 1.5–4 orders of magnitude, even with overburden pressure simulating a 1-m-thick cover. Comparison of these data with other data from the United States and Europe indicates that exchange of Ca and/or Mg for Na is likely to occur in the field unless the overlying cover soil is sodic (sodium rich). The comparison also shows that hydraulic conductivities on the order of 10?6?to?10?4?cm/s should be expected if exchange occurs coincidently with dehydration, and the effects of dehydration are permanent once the water content of the GCL drops below approximately 100%. Evaluation of the field data also shows that covering a GCL with a soil layer 750–1,000?mm thick or with a geomembrane overlain by soil does not ensure protection against ion exchange or large increases in hydraulic conductivity.  相似文献   

20.
This paper reports the in situ field saturated hydraulic conductivity of municipal solid waste at a landfill in Florida. The saturated hydraulic conductivity (Ks) was estimated at 23 locations using the borehole permeameter test, a method commonly used for determination of the Ks of unsaturated soil. The Ks of the landfilled waste was found to range from 5.4×10?6 to 6.1×10?5?cm/s. The Ks was found to be on the lower end of the range of Ks reported by previous studies. The hydraulic conductivity of the waste decreased with depth, the likely result of greater overburden pressures associated with deep locations of the landfill. Permeability values (kw) of the landfilled waste calculated based on Ks were compared with permeability values estimated using air as the fluid (air permeability, ka). Values of ka were found to be approximately three orders of magnitude greater than those of kw. The lower permeability of the waste to water was primarily attributed to entrapped gas. Other factors such as potential clogging of media and short-circuiting of air along the well may also have contributed to the differences in ka and kw.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号