首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Optimal crop water allocation has become more challenging in drier areas of the world (short of rainfall) due to increased water scarcity and more frequent droughts. alternative cropping patterns, reallocation of water resources and modification of irrigation are some of the strategies used to address droughts . A new optimization model is used in this study to find the optimal cropping patterns during droughts, while benefiting from deficit irrigation to decrease the total allocated water. Moreover, the proposed model is subjected to a proportional cutback constraint to meet optimized proportional water allocation under limited water condition. As a real case study, two related districts, namely Neku-abad and Abshar located in Zayandeh-rud River basin are considered. Zayandeh-rud river basin is located in the central part of Iran. For better illustration of model outputs, the proposed model was checked using various irrigation efficiency values (60–100 % in 10 % interval), water reduction ratios (0.0–0.4) and cutback parameters (λ a ?=?0.3,?λ n ?=?0.7, λ a ?=?0.51,?λ n ?=?0.49 and λ a ?=?λ n ?=?0.5). The results showed that the values of λ a ?=?0.51,?λ n ?=?0.49 presents the maximum proportionality in terms of water reduction among all the allocation units or users. Although different values of cutback parameters (e.g.: λ a ?=?0.3,?λ n ?=?0.7) maximize net benefits, they are not considered as proportionate decisions in the considered study area.  相似文献   

2.
The data envelopment analysis (DEA) model was used to estimate the technical efficiency (TE) scores, the Malmquist total factor productivity (TFP) indices, and their implicit input shadow shares for 12 irrigation districts in Southern Alberta using data for the period 2008–12. The main purpose was to establish benchmarks so that future increases in conservation, efficiency and total factor productivity of water use (major goals of Alberta’s Water for Life strategy) can be assessed. Results of an input-oriented DEA model indicated that the irrigation districts were, on average, 84.3 % technically efficient in their input use, primarily the net water diverted. The output-oriented model indicated that the irrigation districts, alternatively, could expand their total irrigated areas by 58.3 % with the current level of input use. Over the period 2008–12, the year-to-year mean Malmquist TFP for the irrigation districts of Southern Alberta was estimated to be 0.98 %. Net water diverted was identified as the most important contributing input (76 %) to the TFP change. The second and third contributing factors were pivot irrigation technology (6 %) and precipitation (5 %).  相似文献   

3.
Bangladesh has a large and growing population that will demand more food and place greater pressure on resources. Dry season irrigated Boro rice production is important for national food security. Dry season irrigation mainly uses groundwater, but the extent of its use is not well known. We assessed groundwater use and water productivity of Boro in the northwest region of Bangladesh using remote sensing based energy balance modelling, crop classification and secondary statistics. The energy balance modelling shows a large spatial variation in the actual evapotranspiration (ETa) from about 325 to 470 mm, with an overall spatial average of 365 mm during dry season. The estimated values of ETa correspond well with independent values from field and regional scale soil and water balance modelling results. From spatial estimates of ETa and effective rainfall, we computed regional net groundwater use for Boro production in 2009 as 2.4 km3. Groundwater is being used unsustainably in some areas, and a spatial time series (1990 to 2010) of pre- and post-monsoon groundwater depth changes in the northwest region of Bangladesh suggests that, with the current level of groundwater use, falling groundwater levels may pose a long term threat to the sustainability of irrigated agriculture in much of the region. Boro water productivity varies from 0.95 to 1.35 kg/m3, allowing the identification of high performing “bright” and low performing “hot” spots and the development of strategies to reduce crop yield/productivity gaps and ensure future food security.  相似文献   

4.
MATLAB? software named PRESUD (Pressurized Subunit Design) was developed to identify the optimum solid set sprinkler irrigation subunit design with a criterion of minimizing the annual water application cost (CT). This CT is defined as the cost per cubic meter of water applied to the soil for crop use. In this study, only rectangular subunits are considered, using an iterative method for calculating the lateral and manifold pipelines. The results indicate that water cost (Cw), which includes the investment and operation costs for pumping water from the source to the subunit inlet, makes up 75 % of CT. Another important factor is energy cost, which comprises 14 % of CT. The remaining variables, such as sprinkler spacing and layout, or application rate (ARa), have a lower impact on CT. In cases of use groundwater, the proportion of energy cost in CW can reach 40 %; thus, energy is an important part of CT. Results shows that the criterion of limiting the maximum difference in pressure heads in the irrigation subunit (Δh?T, and the use of tools such as PRESUD can help obtain better solutions.  相似文献   

5.
Agriculture in the Mediterranean region is constrained by limited water resources and in many countries irrigation demand exceeds the renewable water supply. This paper presents a comprehensive approach to (a) quantify the consumptive green (soil moisture provided by precipitation) and blue (irrigation) water use for crop production, (b) distinguish the contribution of groundwater to irrigation supply and (c) estimate groundwater over-abstraction. A spatiotemporally explicit soil water balance model, based on the FAO-56 dual crop coefficient approach, which includes the computation of evaporation losses of the different irrigation systems, was applied to the 5,760-km2 area of the Republic of Cyprus for the agro-meteorological years 1995–2009. The model uses national agricultural statistics, community-level data from the agricultural census and daily data from 34 meteorological stations and 70 precipitation gauges. Groundwater over-abstraction is quantified per groundwater body, based on the sustainable abstraction rates specified in the Cyprus River Basin Management Plan, as prepared for the EU Water Framework Directive. It was found that, on average, total agricultural water use was 506 Mm3/year, of which 62 % is attributed to green water use and 38 % to blue water use. Groundwater contributed, on average, 81 % (151 Mm3/year) to blue water use and exceeded the recommended abstraction rates by 45 % (47 Mm3/year). Even though the irrigated area decreased by 18 % during the 2008 drought year, relative to the wettest year (2003), total blue water use decreased by only 1 %. The limited surface water supply during the driest year resulted in a 37 % increase in groundwater use, relative to the wettest year, and exceeded the sustainable abstraction rate by 53 % (55 Mm3/year). Overall, the model provides objective and quantitative outcomes that can potentially contribute to the improvement of water resource management in Mediterranean environments, in the light of climate change and expected policy reforms.  相似文献   

6.
Shallow water table levels can be predicted using several approaches, either based on climatic records, on field evidences based on soil morphology, or on the outputs of physically based models. In this study, data from a monitoring network in a relevant agricultural area of Northern Italy (ca. 12,000 Km2) were used to develop a data driven model for predicting water table depth in space and time from meteorological data and long-term water table characteristics and to optimize sampling density in space and time. Evolutionary Polynomial Regressions (EPR) were used to calibrate a predictive tool based on climatic data and on the records from 48 selected sites (N?=?5,611). The model was validated against the water table depths observed in 15 independent sites (N?=?1,739), resulting in a mean absolute error of 30.8 cm (R 2?=?0.61). The model was applied to the whole study area, using the geostatistical estimates of the average water table depth as input, to provide spatio-temporal maps of the water table depth. The impact of the degradation of data input in the temporal and spatial domain was then assessed following two approaches. In the first case, three different EPR models were calibrated based on 25 %, 50 % and 75 % of the available data, and the error indexes compared. In the second case, an increasing number of monitoring sites were removed from the initial data set, and the associated increased kriging standard deviation was assessed. Reducing the average sampling frequency from 1.5 per month to 1 every 40 days did not impact significantly on the prediction capability of the proposed model. Reducing the sampling frequency to 1 every 4 months resulted in a loss of accuracy <3 %, while removing more than half locations from the network, resulted in a global loss of information <15 %.  相似文献   

7.

The performance of an irrigation water delivery canal located in northern Iran, which supplies water to 5,514 ha of paddy fields through ten secondary canals, was investigated. Throughout the rice growing season in the region, two performance measures, the measure of adequacy (PA) and the measure of equity (PE), were calculated for the system. It was observed that the canal, in its current physical and operational condition, is unable to distribute available water among all upstream and downstream users adequately. While 46.7?% of the total area is experiencing significant water scarcity, the amount of water received by 51.4?% of the area is approximately three times more than required. To improve the performance of the canal, structural and non-structural modifications were proposed and assessed using the SOBEK hydrodynamic model. The results showed that implementing the proposed modifications would decrease the measure of equity by 71.7?%, meaning that the overall performance of the canal could be reasonably improved.

  相似文献   

8.
Encouraging shallow groundwater use through water table management or controlled drainage in irrigated areas can relief crop water stress under water shortage condition. But substituting fresh irrigation water with saline groundwater may speed up salinity buildup in the crop root zone, and consequently increase water use for salt leaching. With a proposed analytical model, this paper presents a case study demonstrating the effect of encouraging shallow groundwater use through controlled drainage on salt and water management in a semi-arid irrigation area in northwestern China. Based on the average rainfall condition, the model assumes that salt accumulates in the crop root zone due to irrigation and shallow groundwater use; till the average soil salinity reaches the crop tolerance level, leaching irrigation is performed and the drainage outlet is lowered to discharge the salt-laden leaching water. For the relatively salt tolerant crop–cotton in the study area, the predicted leaching cycle was as long as 751 days using the fresh water (with salinity of 0.5 g/L) irrigation only; it was shortened to 268 days when the water table depth was controlled at 2 m and 23% of the crop water requirement was contributed from the saline groundwater (with salinity of 4.43 g/L). The predicted leaching cycle was 140 days when the water table depth was controlled at 1.5 m and groundwater contribution was 41% of the crop water requirement; it was shortened to 119 days when the water table depth was controlled at 1.2 m and the groundwater contribution was 67% of the crop water requirements. So the benefit from encouraged shallow groundwater use through controlled drainage is obtained at the expense of shortened leaching cycle; but the shallow groundwater use by crops consists of a significant portion of crop water requirements, and the leaching cycle remains long enough to provide a time window for scheduled leaching in the off season of irrigation. Weighing the pros and cons of the encouraged shallow groundwater use may help plan irrigation and drainage practices to achieve higher water use efficiency in saline agricultural areas.  相似文献   

9.
Water demand for irrigated agriculture is increasing against limited availability of fresh water resources in the lower reaches of the Amu Darya River e.g., Khorezm region of Uzbekistan. Future scenarios predict that Khorezm region will receive fewer water supplies due to climate change, transboundary conflicts and hence farmers have to achieve their yield targets with less water. We conducted a study and used AquaCrop model to develop the optimum and deficit irrigation schedule under shallow groundwater conditions (1.0–1.2 m) in the study region. Cotton being a strategic crop in the region was used for simulations. Capillary rise substantially contributes to crop-water requirements and is the key characteristic of the regional soils. However, AquaCrop does not simulate capillary rise contribution, thereby HYDRUS-1D model was used in this study for the quantification of capillary rise contribution. Alongside optimal irrigation schedule for cotton, deficit strategies were also derived in two ways: proportional reduction from each irrigation event (scenario-A) throughout the growth period as well as reduced water supply at specific crop growth stages (scenario-B). For scenario-A, 20, 40, 50 and 60 % of optimal water was deducted from each irrigation quota whereas for scenario-B irrigation events were knocked out at different crop growth stages (stage 1(emergence), stage 2 (vegetative), stage 3 (flowering) and stage 4 (yield formation and ripening)). For scenario-A, 0, 14, 30 and 48 % of yield reduction was observed respectively. During stress at the late crop development stage, a reduced water supply of 12 % resulted in a yield increase of 8 %. Conversely, during stress at the earlier crop development stage, yield loss was 17–18 %. During water stress at the late ripening stage, no yield loss was observed. Results of this study provide guidelines for policy makers to adopt irrigation schedule depending upon availability of irrigation water.  相似文献   

10.
Urban stormwater runoff could have negative impacts on water resources and the environment. Rainwater Harvesting (RWH) can serve both as a stormwater control and water conservation measure. Cistern size and irrigation scheduling are two of the factors that directly impact the total runoff from a residential unit with a RWH system and the amount of potable water used for irrigation. The effectiveness of RWH was evaluated for four soil types; Sand, Sandy Loam, Loamy Sand, and Silty Clay, with a root zone of 15.2 cm using three irrigation scheduling methods (Evapotranspiration (ET)-based, soil moisture-based, and time-based), and five cistern sizes. Total runoff volumes and total supplemental potable water used were compared among the three irrigation scheduling systems and a control treatment without RWH. A model was developed to simulate the daily water balance for the treatments. Irrigation and runoff volumes were compared for the various scenarios. Silty clay soil resulted with 83 % more runoff than Sandy soil, while Sandy soil required on average 58 % more supplemental water than Silty Clay soil. On average, the 833 L cistern resulted with 41 % savings in water supply and 45 % reduction in total runoff. Results showed that the greatest volumes of runoff predicted were for the silty clay soil Control Treatment using a time-based irrigation scheduling method, while the least volumes calculated were for the sandy loam soil time-based irrigation scheduling treatment with 833 L cistern size. The greatest volumes of total supplemental water predicted were for sandy loam soil Control Treatment, while the least volumes were for silty clay soil ET-based irrigation scheduling treatment with 833 L cistern size. Regression equations were developed to allow for users to select a RWH cistern size based on the amount of water they want to save or runoff to reduce.  相似文献   

11.
High levels of nitrates in groundwater pose a risk to human health. In this study, we selected areas with typical agricultural nitrate pollution in northeast China as study sites. We then collected groundwater samples for nitrate nitrogen content analysis using the Four Step method developed by the United State Environmental Protection Agency (USEPA) in conjunction with the non-carcinogens health risk model (R?=?CDI/RfD) to determine the health risk associated with nitrate pollution of groundwater. The reference value of nitrates in drinking water was set at 10 mg/L (measured as nitrogen) and the intake reference dose of nitrate was set at 1.6 mg?kg?1?d?1 based on the EPA’s IRIS(Integrated Risk Information System). The water intake reference values were set at 2.3 L/d and 1.5 L/d based on the EPA values and actual values observed in the study area. The average exposure time was the ED (exposure duration)?×?365d/a. Weights refer to the 2002 national urban and rural average weight of residents of different genders and different ages. Health hazard index calculation was based on the above information, and the index less than 1 is acceptable (U.S. EPA’s Risk Assessment Guide). Health risk assessment maps were then drawn by Arcgis software. The results indicated that agricultural sewage irrigation areas in the study area showed strong health risks, but that those of the city were relatively small. Moreover, the results indicated that children’s health risks are greater than those of adults.  相似文献   

12.
Abstract

This article presents a method for analyzing the economic feasibility of modernizing irrigation systems. By using substitution relationships between two variables, one can determine irrigation performance and farm profit ?above which modernization would be justified from an economic point of view; ?and also the investments and energy consumption up to which modernization could be considered cost-effective. By means of representative average values, this method is applied to the now widespread conversion from surface irrigation to drip irrigation in Spain. Two conclusions are drawn. First, modernization may, in some instances, be justified only if more productive crop patterns are implemented. Second, saving water is a cheaper option than using an alternative resource only under certain conditions.  相似文献   

13.
This article first presents the urban domestic water access situation in Mozambique. Then it analyzes the country's tariff system as a tool to recover water supply costs and to secure equity and affordability for the urban households served. The analysis focused on those households with in-dwelling water access (less than 50% of the urban population in Mozambique). Urban families using 5 m3, 10 m3, and 15 m3 of in-dwelling piped water per month pay an average of USD 0.86, 0.74, and 0.76 per m3, respectively. At the national level, cost recovery is an issue because in most urban areas operation and maintenance costs are not fully covered. The average coverage ratio for the country is 0.85. The presented figures indicate that a revision of the water tariffs currently applied in Mozambique could help improve equity, affordability and cost recovery.  相似文献   

14.
Water Footprint of Grain Product in Irrigated Farmland of China   总被引:1,自引:0,他引:1  
China faces the dual challenge of grain production pressure and water scarcity. It is significant to reduce water footprint of grain product (WFGP, m3/t) in irrigated farmland. The focus of grain production and agricultural water use, and the precondition is to determine the WFGP and its composition. This paper estimates the WFGP in irrigated farmland of 31 provinces (including municipalities, autonomous regions) a by collecting actual data of 443 typical irrigation districts in 1998, 2005 and 2010, and analyses its temporal and spatial variation in irrigated farmland of China. The result shows that the WFGP in each province decreases with time except in Jiangxi and Hunan, and the average value of all provinces reduced from 1494 m3/t in 1998 to 1243 m3/t in 2010. The WFGP decreases faster in more developed municipal cities and major grain production provinces. The annual average WFGP in irrigated farmland is 1339 m3/t and the blue and green water account for 63.5 % and 36.5 % of the total, respectively. The WFGP and its composition are significantly different between provinces. Generally, provinces distributed inside and beyond Huang-Huai-Hai Plain, have a higher water productivity, lower WFGP and blue water footprint of grain product, while most provinces located in northwest, northeast, southeast and south China have a higher WFGP and lower proportion of green water in the WFGP as a whole. Portion of the blue water footprint (BWFGP) is not consumed for crop evapotranspiration (BWFGP ET ) but conveyance loss (BWFGP cl ). The national averaged BWFGP cl decreases with time and but still remains up to 466 m3/t in 2010, making up 34.8 % of the WFGP. In order to safeguard grain security and ease the water resource pressure, the Chinese government should increase investment and apply advanced technology for developing water-saving agriculture, improve the efficiency of water use and further reduce the WFGP. Considering also the contribution of grain output and the relatively high WFGP, the government should give priority to developing water-saving agriculture in the Northeast of China.  相似文献   

15.
Artificial neural network (ANN) and Adaptive Neuro-Fuzzy Inference System (ANFIS) have an extensive range of applications in water resources management. Wavelet transformation as a preprocessing approach can improve the ability of a forecasting model by capturing useful information on various resolution levels. The objective of this research is to compare several data-driven models for forecasting groundwater level for different prediction periods. In this study, a number of model structures for Artificial Neural Network (ANN), Adaptive Neuro-Fuzzy Inference System (ANFIS), Wavelet-ANN and Wavelet-ANFIS models have been compared to evaluate their performances to forecast groundwater level with 1, 2, 3 and 4 months ahead under two case studies in two sub-basins. It was demonstrated that wavelet transform can improve accuracy of groundwater level forecasting. It has been also shown that the forecasts made by Wavelet-ANFIS models are more accurate than those by ANN, ANFIS and Wavelet-ANN models. This study confirms that the optimum number of neurons in the hidden layer cannot be always determined by using a specific formula but trial-and-error method. The decomposition level in wavelet transform should be determined according to the periodicity and seasonality of data series. The prediction of these models is more accurate for 1 and 2 months ahead (for example RMSE?=?0.12, E?=?0.93 and R 2?=?0.99 for wavelet-ANFIS model for 1 month ahead) than for 3 and 4 months ahead (for example RMSE?=?2.07, E?=?0.63 and R 2?=?0.91 for wavelet-ANFIS model for 4 months ahead).  相似文献   

16.

Water productivity is a major challenge in all agricultural regions and despite water shortages, farmers do not welcome water management strategies due to a lack of knowledge of possible economic consequences. This study aimed to introduce the optimum applied water depths under limiting conditions through mathematical optimization. The effects of optimization were coupled with irrigation scheduling to assess yield, water productivity, and net income. Production and cost functions were created based on two scenarios for the applied water. According to the results, the best applied water depth under water limiting conditions depends on land limiting conditions and how severe water limitation is. In mild to moderate water limiting conditions, by using the optimum applied water depth (Ww), water can be saved by 26% causing a 3 to 4% decrease in the net income per unit of land and a 16% increase in the net income per unit of water. As water supply is severely limited, using the equivalent optimum applied water depth (Wew) results in the highest productivity. Although using Wew causes a 14 to 17% decrease in the net income per unit of land, it saves water by 46%. In water limiting conditions, if the land is not limited, using Wew causes the maximum net income per unit of land. A sensitivity analysis was conducted for the net income and the optimum applied water depths, as well. Furthermore, irrigation scheduling caused a 27% increase in the net income per unit of land. Overall, using optimum applied water depths and irrigation scheduling are highly recommended for addressing water scarcity.

  相似文献   

17.
The size of a irrigation unit command area (UCA) has significant influence on distribution of water among farms and the efficiency of irrigation within farms. A model incorporating the concepts of equity, efficiency and productivity is developed for designing optimal UCA size and is validated with data from Bhakra Canal System in India. The design of watercourses by adopting the suggested procedure would lead to improvement in three‐criterion parameters (equity, efficiency and productivity). This establishes the need for and scope of modifying the existing designs.  相似文献   

18.
Network sectoring is one of the most effective measures to reduce energy consumption in pressurized irrigation networks. In this work, the previous model focused on the irrigation networks sectoring with several supply points (WEBSOM), which considered the simultaneous operation of all hydrants, has been improved by integrating an analysis of multiple random demand patterns and their effects on variability in hydrant pressure (extended WEBSOM). The extended WEBSOM has implied a multiobjective optimization, followed by a Montecarlo procedure to analyze different flow regimes using quality of service indicators, a novelty for multi-source pressurized irrigation networks. This innovation has involved energy savings ranging from 9 to 15 % with respect to the consideration of the concurrent operation of all hydrants, which rarely occurs in on-farm irrigation systems. These energy savings were associated with maximum values of pressure deficit of 21 and 34 % in the most critical hydrant with a deficit frequency of 27 and 36 % in the peak month. However, smaller and less frequent deficits were achieved in the rest of the months. Thus, substantial energy savings can be obtained in irrigation districts without significant losses in the service quality provided to farmers.  相似文献   

19.
Agriculture policy changes in Saudi Arabia are investigated by water footprint (WF) assessment. WF is calculated with the model SPARE:WATER for 3758 irrigated sites. The WF of agriculture areas (WFarea, km3 yr?1) has decreased (–17%) since the year 2000 to 13.84 km3 yr?1 (2011), which is mainly caused by the reduction of cropland by –33%. Nevertheless, water consumption per field has increased about 16%, which can be attributed to the cultivation of fodder crops (+12%). A scenario analysis revealed that a shifting cropping pattern towards less fodder crops reduces WFarea by –15%, and implementing improved irrigation technology leads to a combined reduction of up to 32%  相似文献   

20.
In water stressed regions such as the Central Rift Valley of Ethiopia, increasing Crop Water Productivity (CWP) is imperative for sustainable food and water security. This paper presents CWP of Teff (Eragrostic Tef), a staple food in Ethiopia and an important export crop. Field experiments were conducted under irrigated agriculture during the dry seasons in the periods: 1) November 2010 to March 2011; and 2) December 2011 to April, 2012 at Melkassa Agricultural Research Centre in Ethiopia. Teff crop was irrigated at sixteen different water application depths ranging from 100 to 25 % of the optimum Crop Water Evapotranspiration (ETc.) during the four growing stages, the initial, development, mid season and late season. The effect of seeding rates of 25 kg/ha and 10 kg/ha on lodging and yield of the crop was also determined. The main results were: 1) At 25 % deficit irrigation applied for the whole growth period, Teff CWP was the highest at 1.16 and 1.08 kg/m3 respectively for the seeding rates of 25 kg/ha and 10 kg/ha; 2) the CWP slightly decreased to 1.12 and 1.07 kg/m3 when the 25 % deficit was applied during the late season stage; 3) the crop yield response factor (Ky) of 1.09 and 1.19 was obtained for seeding rates of 25 kg/ha and 10 kg/ha respectively; the equivalent biomass response factor (Ky) was less at 0.88 and 0.96 respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号