首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Dynamic weighting system for water quality index   总被引:1,自引:0,他引:1  
Water quality standards are developed world over by National and International agencies for pollution control decision-making. Use-based water quality classification criteria and Water Quality Indices (WQIs) also play important role in assessment of water resources for their suitability with reference various uses. Formulation of value function curves and weights assigned to parameters in WQIs are often defined by local water experts and hence WQIs are known to inherit subjectivity. Assignment of weights a priori to various water quality parameters results in misclassification of water quality by WQI. A method of dynamic weighting has been developed in the present work to assign weights to water quality parameters with due consideration to their pollution effect at a particular site. Application of a methodology to Overall Index of Pollution (OIP) provides water quality classification of Indian rivers as "Polluted", "Acceptable", and "Slightly Polluted", which is comparable with the reported CPCB classification as well as with the statistical index CCME-WQI. The methodology developed is general and can be applied to any subjective index. This is exemplified by dynamically weighting the parameters in NSF-WQI for Red and Waikato rivers. Dynamic weighting system provides a true representation to comprehend water quality classification and to achieve River Quality Objectives.  相似文献   

2.
An understanding of ongoing changes in salinity and nutrient status, as influenced by anthropogenic forcing factors, is important for integrated lake basin management (ILBM) and conservation of water resources in dry tropical regions. This study analysed a range of water quality attributes, including salinity, nitrate (NO3?), ammonia (NH4 + ), phosphate (PO4 3 ?) and dissolved organic carbon (DOC) in two freshwater lakes in Rajasthan, India for three consecutive years (2000–2002). Between‐lake comparisons indicated marked differences in most of the water quality variables. The pH in both study lakes remained above neutral. Water hardness, salinity and concentrations of total dissolved salts (TDS), chlorides, NO3?, NH4+, PO33? and DOC were high in Lake Udaisagar, which received inputs from agricultural drainage and urban–industrial releases. The DOC in Lake Baghdara, which drains a woodland catchment, was similar to that for Lake Udaisagar, indicating the role of allochtonous inputs in the build‐up of DOC. The results of this study indicated that increasing human interferences have increased the nutrient concentrations in Lake Udaisagar. This factor, coupled with extended periods of dryness, drives these two freshwater lakes towards a high salinity. This study provides evidence of a human‐induced salinity increase and has relevance for ILBM and for the conservation of freshwater resources in dry regions.  相似文献   

3.
Water Quality Assessment of the Mudurnu River,Turkey, Using Biotic Indices   总被引:2,自引:1,他引:1  
In this study, the effect of domestic and industrial pollutants on the water quality of Mudurnu River was searched. Water and benthic macroinvertebrate samples were taken from five stations selected on Mudurnu River during 12 months (2006–2007). COD (Chemical Oxygen Demand), BOD (Biochemical Oxygen Demand), TKN (Total Kjeldahl Nitrogen), NO3-{\rm{NO}}_{3}^{-}–N (Nitrate–Nitrogen), PO4-3{\rm{PO}}_{4}^{-3}–P (Phosphate–Phosphorous), NH4+{\rm{NH}}_{4}^{+}–N (Ammonium–Nitrogen), Phenol data and scores of BMWP (Biological Monitoring Working Party) score system, ASPT (Average Score per Taxon), TBI (Trent Biotic Index), BBI (Belgian Biotic Index), Margalef’s index (R), Shannon–Wiener diversity index (H), Simpson’s diversity index (D) were determined. The relationship between data of chemical parameters and scores of biotic indices were investigated by using statistical methods. With decision tree technique, artificial neural network (ANN) and logistic regression model, chemical water quality was predicted from scores of biotic indices. A success at 67% was provided in the prediction of chemical water quality class of Mudurnu River.  相似文献   

4.
Evolution of a new surface water quality index for Karoon catchment in Iran   总被引:1,自引:0,他引:1  
Water quality standards are developed worldwide by national and international agencies for pollution control decision-making. Use-based water quality classification criteria and Water Quality Indices (WQIs) also play an important role in the assessment of the suitability of water resources for various applications. The present study proposes a better overall index for water quality in Iran and its application in Karoon River by exploring the behavior and limitations of conventional methods for quality evaluation. For this purpose, six variables were employed. Water quality determinants of the new index include Dissolved Oxygen, Total Dissolved Solids, Turbidity, Nitrate, Fecal coliform and pH. Besides, the mathematical equations applied to transform the actual concentration values into quality indices have been formulated. This study compares a new index called the Iranian Water Quality Index with other pre-existing indices such as NSFWQI, Oregon, CPCB WQI, MDOE WQI, Kaurish and Younos WQI, and Ahmed Said WQI. Results revealed that the overall quality of the surface water falls under the 'good' class. A case study of Karoon River is made to illustrate the application of this new index system.  相似文献   

5.
为考察南水北调东线工程通水前后东平湖地区枯水期地下水水质变化情况,引入云模型,选择总硬度、SO_4~(2-)、Cl~-、NO_3~-、NH_4~+、F~-6个水质指标作为评价因子,将南水北调东线工程通水前后的东平湖地下水水质实测数据输入云模型,得到各评价因子的确定度和基于权重计算的各采样点的综合确定度,由最大确定度确定各采样点的水质级别。结果表明,南水北调东线工程通水后,所采集的7个地下水水样的水质级别并未降低,湖区东部水样的水质劣于西部。  相似文献   

6.
7.
Evaluation of the Parameters of Water Quality with Wavelet Techniques   总被引:3,自引:3,他引:0  
Generally, wavelets are purposefully crafted to have specific properties that make them useful for signal processing. In recent years, wavelet analysis have commonly been used instead of Fourier analysis. This is a new approach for evaluation of water quality parameters. This study determined water quality parameters and effects on water quality in Gölcük, Turkey. A 13-month data series was compared with results from laboratory analysis by using wavelet model techniques. The study investigated eight surface water sources, located in rural areas (five different villages) in the vicinity of Gölcük. Water samples were obtained during spring and analyzed for contaminants. The samples were analyzed for Cl- (chlorine), NO3-N (nitrate) and pH values. Wavelet analysis of extreme events showed the role of seasonal oscillations, and small-, meso- and large-scale effects on some water quality parameters. In addition, the Cl-, NO3-N and pH contents were determined for their suitability for irrigation, drinking and other domestic uses.  相似文献   

8.
利用牛栏江-滇池补水工程运行前后的水质实测资料,对滇池外海的水环境改善效果进行研究。选取TP、TN、NH_3-N、COD_(Mn)、Chl-a、SD等主要水环境指标,从指标浓度变化、水质类别变化、指标向好率变化和极大值变化等方面分析牛栏江-滇池补水工程对滇池外海的水环境改善效果。结果表明,牛栏江-滇池补水工程运行后,滇池外海各监测站点的TP、TN、NH_3-N、COD_(Mn)、Chl-a、SD及营养状态指数均优于调水前,富营养化水平明显好转,水环境改善成效显著。  相似文献   

9.
Urban and agricultural land uses can alter the natural hydrologic conditions of streams and rivers and often degrade water quality. In the Ozark Highlands of the mid‐southern United States, the climate, topography, soil properties, karst limestone geology, agricultural practices and rapid urbanization make water quality of particular concern due to the increased potential for water quality degradation by contaminant leaching to groundwater and runoff to surface waters. The objective of this study was to evaluate the effects of season (i.e. dry/cool and wet/warm) and riparian land use (i.e. urban, grazed pasture, ungrazed pasture, wetland, cultivated agriculture and grassland) on surface water quality in a first‐order stream within a diverse agricultural watershed in the Ozark Highlands. Water samples were collected twice a month within each land use during base‐flow conditions from October 2006 through October 2007. Samples were also collected periodically during storm‐flow conditions from October 2006 through December 2007. The greatest in‐stream pH was adjacent to the grazed pasture. In‐stream NO3‐N concentrations were greatest adjacent to the cultivated agriculture and grassland during the dry/cool season (i.e. October 2006 to March 2007) and averaged 2.67 mg L?1. In‐stream soluble reactive P (SRP) concentrations were greatest adjacent to the grassland during the wet/warm season (i.e. April 2007 to October 2007) and averaged 0.81 mg L?1. Concentrations of SRP, K, Mg and Zn were greater during storm‐ than base‐flow conditions and in‐stream As concentrations frequently exceeded 0.01 mg L?1. Discharge and in‐stream NH4‐N concentrations were unaffected by land use or season and averaged 0.003 m3 s?1 and 0.10 mg L?1, respectively, across all land uses and seasons. Results of this study clearly demonstrate the significant effect of adjacent land use on in‐stream water quality of a first‐order stream in a diverse agricultural watershed and highlight the importance of managing upstream land use in order to regulate downstream water quality. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

10.
Wakwa is a region in north Cameroon characterized by intensive cattle production. This study evaluated the physicochemical characteristics of the waters in Lake IRAD, located near Wakwa, which is the main water source for cattle grazing in this area. Water samples were collected at four sampling sites during the rainy and dry seasons (April, July, October and February). The chemical composition of the water samples was analysed for various constituents, including nitrate (NO3), chloride (Cl?), phosphate (PO43?), bicarbonate (HCO3?), calcium (Ca), magnesium (Mg), manganese (Mn), aluminium (Al), zinc (Zn), copper (Cu), iron (Fe), nickel (Ni), cadmium (Cd), ammonia–nitrogen (NH4–N) and organic matter (OM). The mineral composition varied significantly (P < 0.05) with the sampling period. High concentrations of zinc (0.96 mg L?1) and dissolved iron (1.23 mg L?l) were observed during the dry season. Total iron (3.25 mg L?1), OM (15.4 mg of O2 L?1), nitrate (28.82 mg L?1) and NH4–N (1.05 mg L?1) concentrations were highest during the rainy season. The iron, OM and NH4–N concentrations were higher than the USEPA‐recommended values (0.2 mg L?1, 4 mg of O2 L?1 and 0.5 mg L?1, respectively). The phosphate, copper, nickel and cadmium concentrations, considered as the polluting substances, were present in negligible concentrations, being below the detection limits of the analytical techniques used to measure them. The high iron, OM and nitrogen concentrations were attributed to water‐leached soil run‐off, as well as the activity of animals in the lake. Sampling sites 1 and 2, which were used mostly by cattle, were observed to have the highest concentrations of NH4–N, compared with sites 3 and S (exit point). It will be necessary to delimit cattle access points to the lake to reduce this type of contamination of drinking water.  相似文献   

11.
Understanding temporal variability in water quality in the Three Gorges Reservoir (TGR) is crucial for evaluating environmental effects of damming and protecting China’s largest freshwater resource. This study examined water quality changes in the main channel of the Yangtze River after dam completion as well as its relationship with water level fluctuation (WLF), controlled by annual impoundment operations and conditioned by flooding. Finally, the mass balance budget and integrative water quality indexing (WQI) methods were applied to elucidate the status of overall water quality since dam completion. Results showed that TGR outlet water (Yichang) exhibited higher pH and CODMn values and lower concentrations of dissolved oxygen (DO) and ammonia nitrogen (NH3-N) than inlet water (Zhutuo). Temporal variations in water quality parameters displayed similar trends for the outlet and inlet. Water quality parameters all showed negative correlations to water level, revealing the different effects of damming on water quality. It was estimated that reservoir impoundment led to a DO depletion of 1495.5 (±1482.0)?×?103 tons/yr and a CODMn increase of 564.0 (±405.0)?×?103 tons/yr, likely deriving from various internal pollutant loads from the WLF zone and tributary watersheds. According to WQI, TGR water quality remained at healthy levels. However, WQI linear regression showed that water quality at the outlet significantly decreased over time, indicating that the construction of the Three Gorges Dam generally caused water quality deterioration. Further investigation is required to determine the spatial distribution of point and non-point pollution sources and to identify major factors that influence TGR water quality.  相似文献   

12.
This study examined how changes in the composition of land use can affect wetland water quality. Twenty-four wetlands located in Hiroshima prefecture in the western part of Japan were selected for this purpose. The water quality parameters that were explored include: pH, electrical conductivity, turbidity, dissolved oxygen, total dissolved solid, temperature and different forms of nitrogen. These important indicators of the water quality in the study area were measured from December 2005 to December 2006. The composition of land uses was determined for the catchments of the wetlands. They were then categorized into three classes, including non-disturbed, moderately-disturbed and highly-disturbed wetlands, based on the extent of urban area (as the most disruptive land use type within the catchment of the wetlands). The relationship between land use types and water quality parameters for the wetlands was statistically examined. The findings indicated that there were significant positive relationships between the proportion (%) of urban areas within catchments of the wetlands and EC (r?=?0.67, p?<?0.01), TDS (r?=?0.69, p?<?0.01), TN (r?=?0.92, p?<?0.01), DON (r?=?0.6, p?<?0.01), NH4 +(r?=?0.47, p?<?0.05), NO2 ? (r?=?0.50, p?<?0.05), while negative relationships were observed between the proportion (%) of forest area in these wetlands and EC (r?=??0.62, p?<?0.01), TDS (r?=??0.68, p?<?0.01), TN (r?=??0.68, p?<?0.01), DON (r?=?-0.43, p?<?0.05), and NH4 + (r?=??0.55, p?<?0.01). Analysis of the variance also revealed significant differences within the wetland groups in terms of the annual mean of electrical conductivity, total dissolved solids, total nitrogen, nitrite, dissolved inorganic nitrogen and dissolved organic nitrogen in the study area. Moreover, the study also indicated that the forest area plays a significant role in withholding nutrient loads from the wetlands, and hence, it can act as a sink for surface/subsurface nutrient inputs flowing into such water bodies from the watersheds.  相似文献   

13.
Spatial physicochemical parameters were determined from 39 sampling sites distributed throughout Lake Baringo during December 2010. Mean values of temperature, dissolved oxygen concentration and electrical conductivity decreased successively with depth, while the pH remained constant. Only the turbidity values increased marginally with depth. Of the surface water parameters, mean (range) values of dissolved oxygen (DO), pH, electrical conductivity, water transparency and turbidity were 6.9 (4.5–8.4) mg L?1, 8.3 (7.8–8.5), 573 (556–601)μS cm?1, 33 (28–37) cm and 43.3 (32.7–54.6) NTU, respectively. Mean and range values of total nitrogen (TN), nitrate‐nitrogen(NO3‐N), ammonia nitrogen (NH4‐N), total phosphorus (TP) and soluble reactive phosphorus (SRP) were 788.4 (278–4486) μg L?1, 4.5 (2.4–10.0) μg L?1, 42.6 (33.8–56.3) μg L?1, 102.9 (20.3–585.3) μg L?1 and 23.5 (15.2–30.5) μg L?1, respectively. Dissolved silica concentrations ranged from 19.7 to 32.7 mg L?1, with a mean value of 24.7 mg L?1. The chlorophyll‐a concentrations were quite low, ranging from 1.4 to 4.9 μg L?1, with a mean value of 4.2 μg L?1. In contrast to previous reported values, a key finding in the present study is a relatively high water transparency, indicating a relatively clear water column, due possibly to the fact that the sampling was conducted during the dry period. The nutrient levels remained low, and the chlorophyll‐a concentration also was an almost all time low value. A TP value of 20 μg L?1 and higher confirms strongly eutrophic conditions prevailing in the lake, with an extremely low potential for fish production and low species diversity, consistent with other studies. The results of the present study, therefore, reinforce the database for future management and monitoring plans for the Lake Baringo ecosystem, which lies adjacent to known geothermally active zones and a saline Lake Bogoria.  相似文献   

14.
High altitude ecosystems have important natural ecological functions but are under increasing impacts from human activities and climate change. A detailed analysis of the water chemistry of Lake Rara, a high mountain lake in western Nepal, was carried out in October 2015 and April 2016. A total of 31 water samples were collected. Major ions (Ca2+, Mg2+, Na+, K+, SO42?, NO3? and Cl?) were analysed by ion chromatography. Si and PO43? were analysed following the standard protocols. Conductivity, pH, total dissolved solids (TDS), turbidity and dissolved oxygen (DO) were measured on‐site. The lake is oligotrophic characterized by low PO43? concentration (0.06 ± 0.01 mg/L), high DO values (6.73 ± 0.06 and 10.89 ± 0.86 mg/L), alkaline pH (8.42 ± 0.3 and 8.32 ± 0.23) and low conductivity (189.93 ± 5.3 and 189.22 ± 5.8 μS/cm). The concentrations of the major cations were in the order of Ca2+ > Mg2+ > K+ > Na+ (during both seasons), and for anions, it was HCO3? > SO42? > Cl? > NO3? and HCO3? > Cl? > NO3? > SO42? during postmonsoon and premonsoon, respectively. One‐way ANOVA revealed significant seasonal variations (p  < 0.05) in most of the physicochemical parameters. The increased concentrations of most of the ions in the premonsoon time probably reflect long‐range transport of materials through dry deposition, whereas higher concentrations of NO3? and Cl? in some sites possibly reflect the localized impacts of settlement and grazing. The lake water was classified as Ca(Mg)HCO3. High (Ca2+ + Mg2+)/Tz+ ratio (0.97 in postmonsoon and 0.95 in premonsoon) and low (Na+ + K+)/Tz+ ratio (0.03 in postmonsoon and 0.04 in premonsoon) confirm carbonate weathering as the principal source of major ions with bedrock geology governing the water chemistry. The findings of this study build on the baseline dataset for assessing future anthropogenic influence on the lake and subsequent development for future lake management strategies.  相似文献   

15.
To evaluate the importance of periphyton to nitrogen dynamics in the discharge from wastewater treatment plants (WWTPs), we examined changes in total and inorganic nitrogen content downstream from a WWTP on the Kurose River in Hiroshima Prefecture, Japan. At 0.7 km downstream of the WWTP (point A), NH4+?N was the dominant form of inorganic nitrogen, but concentrations decreased rapidly to 5 km downstream (point B). In contrast, no significant change in the [NO2?+ + NO3?]?N concentration was observed between the two points. Total nitrogen (TN) load decreased significantly between the two points, suggesting that sorption and/or denitrification occurred in the river channel. Potential rates of nitrogen sorption and transformation by periphyton were determined in a loboratory experiment in which changes in the nitrogen content of river water were examined in an acrylic chamber with periphyton. Nitrification and nitrogen removal occurred mainly in the periphyton. The contributions of periphyton activity to TN and NH4+?N decrease in the field, as estimated from the results of the laboratory experiments, were 6–18% and 23–72%, respectively. These results suggest that periphyton plays an important role in decreasing NH4+?N concentration in the discharge from wastewater treatment plants.  相似文献   

16.
In this research, based on the qualitative data of 40 wells, variations of water quality parameters of the Central Plain Aquifer were evaluated using kriging and IDW (Inverse Distance Weighting) methods. Owing to the normal distribution of the studied parameters (except Na+, SO42?, and TH: total hardness), ordinary kriging was used for modeling. The analysis of the data trends indicated that all the variables were influenced by in two general trends, i.e., NW–SE and NE–SW. In fact, these trends were a result of the effect of the structural conditions on aquifer properties such as transmissivity and flow direction. Variogram analysis (based on C0 near zero and C02 ratio between 0.0–0.5) showed that the Na+, TDS (total dissolved solids), Ca2+, and TH variables have a good spatial structure and the BOD (biochemical oxygen demand), COD (chemical oxygen demand), NO3?, and EC variables have poor spatial structure. The BOD, COD, NO3?, and EC (electrical conductivity) variables have the smallest range and isotropic distribution. On the other hand, the Ca2+, Mg2+, Na+, SO42?, Cl?, HCO3?, pH, TDS, TH and Alk (alkalinity) parameters are characterized by anisotropic distributions. The Na+, TDS, Ca2+, and TH variables have the largest range. The results showed that both the IDW and kriging methods have close estimates to one another. The pH variable decreases toward the outlet whereas the EC and TDS variables increase along the direction of water flow and toward the outlet. The distributions of the BOD and COD variables do not perfectly match with the aggregation of industrial activities in the central part as well as the agricultural activities in the southeastern and central parts of the aquifer. The distributions of the Ca2+, Mg2+, and Alk variables completely follow the geology condition and regional spread of carbonate formations. The Na+ concentration increases from the center toward the outlet. The concentration of the Cl? variable is the highest in the central part of the plain due to the concentration of agricultural and industrial activities. The distribution of the SO42? variable is influenced by a natural factor (lithology), especially in the southeastern parts and the outlet as well as artificial factors (agricultural and industrial activities) in the central and southeastern parts of the aquifer. The NO3? variable, which is directly influenced by agricultural and livestock-farming activities, has its maximum concentration in the southeastern areas.  相似文献   

17.
The underwater light climate has important effects on primary producers. The aim of this research was to evaluate its variability in a turbid river‐floodplain system. Photosynthetically active radiation (PAR) was measured in the Middle Paraná River during different hydrological phases to (a) analyse the photosynthetically active radiation attenuation coefficient (k) and euphotic depth (Zeu) as well as their associations with optically active components and (b) develop and evaluate indices and regression models based on Secchi disc (SD) measurements to estimate k and Zeu. Values of k were higher in the fluvial system than in the floodplain and during low‐water stage than high‐water stage. Particulate components controlled the light climate variability. Chromophoric dissolved organic matter and chlorophyll‐a had significant effects during floods. The estimation of k and Zeu was sensitive to temporal but not to spatial variations. The highest prediction accuracy was observed when using specific non‐linear regressions for each hydrological phase, especially for Zeu estimation (low stage: k = 1.76 × SD?0.80, Zeu = 2.62 × 1/SD?0.80; high stage: k = 2.04 × SD?0.53, Zeu = 2.26 × 1/SD?0.53). The indices k × SD and Zeu/SD were significantly different from those proposed for clear water environments. It is concluded that temporal variations should be considered when estimating k and Zeu in turbid river‐floodplain systems because of the temporal heterogeneity in optically active components. Considering that ecological implication of the light climate depends on Zeu:depth ratio, we propose to estimate Zeu instead of k. Finally, indices proposed for clear water environments are not recommended to be applied to turbid environments.  相似文献   

18.
Maximizing the reduction of nitrate to dinitrogen gas (denitrification) has been advocated as a means to decrease nitrate pollution that causes eutrophication and hypoxia in estuaries worldwide. Managing this flux in bottomland forest wetlands of the Mississippi River could potentially reduce the world's second largest hypoxic zone. We used published denitrification rates, geospatial data on habitat area and inundation frequency, water level records (1963–2011), and average monthly temperatures to estimate annual denitrification in the Atchafalaya River Basin, the principal distributary of the Mississippi River. Denitrification rates ranged from 5394 kg N year?1 (3.07 kg N km?2 year?1) in 1988 to 17 420 kg N year?1 (9.92 kg N km?2 year?1) in 1981, and rates were consistently higher in fall compared with those in spring. Total NO3? denitrified in the basin was negligible compared with total NO3? entering the Gulf of Mexico. If all N denitrified in the basin instead entered the Gulf, the hypoxic zone was predicted to increase only 5.07 km2 (0.06%). This negligible effect of the basin on N dynamics in the Gulf agrees with other mass balance and isotopic studies in the region. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

19.
Petra region area was located in south part of Jordan has grown and urbanized rapidly. This area depends on the groundwater as a water resources. This study was undertaken to assess the physical, chemical quality of spring water of Petra region during a 36-months survey (September 2002 to September 2005). The samples were analyzed for temperature, conductivity, dissolved oxygen, pH, major cations (Ca2+, Mg2+, K+, and Na+), major anions (Cl, NO 3, HCO 3, SO2− 4, PO3− 4, F) and trace metals (Fe2+, Al3+, Cu2+, Ni2+ Pb2+, Zn2+ and Mn2+). Water quality for available springs in the study area showed high salinity due to longer period of contact with rocks. The chemistry of spring water samples were alkaline earth waters with prevailing bicarbonate and alkaline earth waters with prevailing bicarbonate chloride. Some springs showed that elevated nitrate, sulfate contents which could be due to percolation from septic tanks, cesspools and irrigational activities. The infiltration of wastewater from cesspools and septic tanks into groundwater was considered the major source of water pollution. The results showed that there were considerable variations among the examined samples with respect to their physical and chemical parameters, which lie below the maximum permissible levels of the Jordanian and WHO drinking water standards. The results indicate that the trace metals of springs water of Petra region do not generally pose any health or environmental problems.  相似文献   

20.
Water transfer from agriculture to urban uses will likely become increasingly common worldwide. The objectives of this study were to evaluate the effects of converting paddy rice to dry land crops (PPRDC) on local farmers’ income in China’s Chaobai watershed and to analyze the responses of surface water quality to the change in cropping system. An on-site investigation of 485 households and water quality data from 1999 to 2008 are presented in this study. The cost of cultivation as a percentage of the total revenue was 22.3 % for rice and 30.1 % for corn, and the calculated compensation level (CCOM) should be 6172.3 Yuan?ha?1. PPRDC provided farms with stable income without regard to drought and flood: thus, farmers responded positively to PPRDC, and 76.7 % of farmers expected to continue PPRDC. Inflow water quality was improved in terms of total nitrogen (TN) and nitrate (NO3–N) because of the reduction in fertilizer and pesticides after PPRDC, but there was no significant change in total phosphorus (TP). PPRDC not only reallocates water resource to different users but also improves water quality through crop adjustment. A dynamic compensation mechanism based on changing crop price is required for the future water transfer project.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号