首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The evolution of water distribution systems to pressurized networks has improved water use efficiency, but also significantly increased energy consumption. However, sustainable irrigated agriculture must be characterized by the reasonable and efficient use of both water and energy. Irrigation sectoring where farmers are organized in turns is one of the most effective measures to reduce energy use in irrigation water distribution networks. Previous methodologies developed for branched irrigation networks with one single source node have resulted in considerable energy savings. However, these methodologies were not suitable for networks with several water supply points. In this work, we develop an optimization methodology (WEBSOM) aimed at minimizing energy consumption and based on operational sectoring for networks with several source nodes. Using the NSGA-II multi-objective genetic algorithm, the optimal sectoring operation calendar that minimizes both energy consumption and pressure deficit is obtained. This methodology is tested in the irrigation district of Palos de la Frontera (Huelva, Spain) with three pumping stations, showing that potential annual energy savings of between 20 % and 29 % can be achieved, thus ensuring full pressure requirements in nearly all hydrants, along with the total satisfaction of irrigation requirements.  相似文献   

2.
The modernization processes of hydraulic infrastructures from old open channels to pressurized networks have increased water use efficiency along with a dramatic increase of energy consumptions. The significant energy requirements associated with the increment of the energy tariffs for irrigation involve higher production costs for farmers. Therefore, strategies to reduce energy consumption in irrigation districts are strongly demanded. Methodologies based on sectoring and critical points control have been applied to branched networks with a single water supply point, obtaining significant energy savings. In this work, a new critical point control methodology for networks with multiple sources has been developed: the WEPCM algorithm, which uses the NSGA-II multi-objective evolutionary algorithm to find the lowest energy consumption operation rule of a set of pumping stations connected to an irrigation network that satisfies the pressure requirements, when the critical points are successively disabled. WECPM has been applied to a real irrigation district in Southern Spain. The obtained results were compared with those achieved by the WEBSOM algorithm, developed for sectoring multiple source networks. The control of critical points by the replacement of two pipes and the installation of four booster pumps provided annual energy savings of 36 % compared to the current network operation. Moreover, the control of critical points was more effective than sectoring, obtaining an additional annual energy saving of 10 %.  相似文献   

3.
In many pressurized irrigation water distribution networks, rising energy costs are having a significant impact on system performance, environmental impact and the profitability of agribusinesses and farms dependant on water supplies for irrigated production. In this study, a new methodology is proposed for analysing the location of critical control points (hydrants) to reduce energy consumption. The methodology is developed and applied using two irrigation districts located in Southern Spain (Fuente Palmera and El Villar). The new approaches provide a framework for comparing different energy saving strategies, including improved critical point management and network sectoring. The results show that potential energy savings of around 10% and 30% are possible in each district when the theoretical irrigation requirements are modeled. However these savings reduce to 5% and 12% when the local farmers’ practices of deficit irrigation are incorporated. These results are compared to those obtained for networks sectoring in the same irrigation networks in a previous work. The study confirms that that a sectoring approach works best for reducing the energy costs associated with meeting actual irrigation water demands in irrigation districts where energy consumption is a limiting factor on production.  相似文献   

4.
Improving energy and hydraulic performance of large-scale pressurized irrigation is now perceived as a very pressing need, after large budgets have been allocated into systems modernization. This paper tackles this priority area by developing a management oriented multi-step methodology, that integrates different existing models, to sector the system according to the pressure requirements of the hydrants, and to regulate the pumping station for i) a fixed and a variable pressure head control, and for ii) an enhanced performance. When applied to an on-demand system in the Sinistra Ofanto irrigation scheme of Foggia (Italy), this integrated approach showed potential for energy saving under the optimal scenario of 49 %, and noticeable improvement in the system performance in terms of hydrant pressure heads, as compared to the actual conditions. The monetary assessment demonstrates that the achieved energy saving amounts to 23,636 Euros per irrigation season, 45 % among which are due to sectoring.  相似文献   

5.
In arid and semi-arid countries, the use of irrigation is essential to ensure agricultural production. Irrigation water use is expected to increase in the near future due to several factors such as the growing demand of food and biofuel under a probable climate change scenario. For this reason, the improvement of irrigation water use efficiency has been one of the main drivers of the upgrading process of irrigation systems in countries like Spain, where irrigation water use is around 70 % of its total water use. Pressurized networks have replaced the obsolete open-channel distribution systems and on farm irrigation systems have been also upgraded incorporating more efficient water emitters like drippers or sprinklers. Although pressurized networks have significant energy requirements, increasing operational costs. In these circumstances farmers may be unable to afford such expense if their production is devoted to low-value crops. Thus, in this work, a new approach of sustainable management of pressurized irrigation networks has been developed using multiobjective genetic algorithms. The model establishes the optimal sectoring operation during the irrigation season that maximize farmer’s profit and minimize energy cost at the pumping station whilst satisfying water demand of crops at hydrant level taking into account the soil water balance at farm scale. This methodology has been applied to a real irrigation network in Southern Spain. The results show that it is possible to reduce energy cost and improve water use efficiency simultaneously by a comprehensive irrigation management leading, in the studied case, to energy cost savings close to 15 % without significant reduction of crop yield.  相似文献   

6.
The adoption of measures leading to higher efficiencies in the use of both water and energy in water distribution networks is strongly demanded. The methodology proposed combines a multi-objective approach and a financial analysis to determine de optimal design of pressurized irrigation networks which entails the minimization of both the investment cost and operational cost under three operating scenarios that incorporate energy saving strategies: 1- all hydrants operate simultaneously; 2- hydrants are grouped into sectors and irrigation turns are established; 3- the on-demand operation of the network is assumed. This methodology has been applied in a real irrigation network located in Southern Spain showing that the lowest overall design cost (investment and operational costs) is achieved in scenario 2. The comparison of the selected solutions in the three proposed scenarios with the current network design considering the total fulfillment of irrigation requirements showed that operational cost savings between 65% and 76% could be achieved.  相似文献   

7.
Development of a Decision Support System for Irrigation Systems Analysis   总被引:1,自引:1,他引:0  
Different groups of hydrants or configurations operate simultaneously in on-demand pressurized irrigation systems, generating different flow regimes. The varieties of flow regimes cause a variability in hydrant pressure and consequently an adequate analysis of the hydraulic performance of the system is needed for better operation and adequate management. A reliable performance assessment needs a modern diagnostic analysis in space and time. To this aim, this research assessed the hydraulic performance of an irrigation district distribution network calculating two performance indicators at hydrant level: relative pressure deficit and reliability, and integrated the outputs in a geographic information system environment providing a framework for a decision support system (DSS). The user friendly interface provides detailed, attainable and interpretable information to address the present scenario as well as the future development of the system, and facilitates the cooperation among researchers, managers, and manufacturers to improve operation, maintenance, and management activities.  相似文献   

8.

Water demand in irrigation is expected to increase in the near future, and it will be seriously impacted by climate change, specifically in semi-arid areas. The increase of water demand, along with the reduction of water availability, can seriously intensify the frequency and magnitude of pressure deficits in pressurized irrigation networks, with dangerous consequences on the healthy crop growth and on the crop production. In this framework, the present paper investigates the contribution of a network of smart control valves, named GreenValve System (GVS, patented by the Politecnico di Milano), to improve the management of a pressurized irrigation system. The GVS is able to recover energy for its operation from the flow, to be remotely commanded and to introduce management logics based on real-time data in order to create a stand-alone real-time monitoring and control network. In the paper, specifically, a three-step general and replicable methodological approach for the definition of installation and operating conditions for these valves is proposed. The effectiveness of a specific management logic, allowed by the use of the GVS, to limit pressure deficit and failure occurrence in the network is discussed. Reference is made to a case study on a critical on-demand irrigation network. The results showed that the introduction of simple management rules can reduce and even avoid the occurrence of hydrant failure, creating the conditions for more effective use of the resources.

  相似文献   

9.
Water Resources Management - Providing adequate pressure at the hydrant is an issue of great importance in the operation of pressurized irrigation distribution systems (PIDS). The hydraulic...  相似文献   

10.
Pressurized irrigation systems operating on-demand offer large flexibility to farmers for managing their irrigation practices. Within these systems, the fast moving water and the sudden closing of hydrants generates unsteady flow and may create a significant pressure variation in the pipes causing noise, vibration and, sometimes, also pipes’ collapse. The present study describes a simulation tool that was developed for the analysis of unsteady flow effects. A large number of configurations of hydrants simultaneously open has been used to reflect farmers’ behaviour. A new indicator, called Relative Pressure Variation (RPV), was proposed to evaluate the pressure variation occurring into the system in respect to the steady-state pressure. This is very relevant and can be used to identify pipes with potential risk of failure. In addition, an analysis with different gate-valves’ closing time was carried out. It demonstrated that closing time shorter than Tc?=?3 s may create dangerous pressures for the pipes.  相似文献   

11.
One of typical problems in water resources system modeling is derivation of optimal operating policy for reservoir to ensure water is used more efficiently. This paper introduces optimization analysis to determine monthly reservoir operating policies for five scenarios of predetermined cropping patterns for Koga irrigation scheme, Ethiopia. The objective function of the model was set to minimize the sum of squared deviation (SSD) from the desired targeted supply. Reservoir operation under different water availability and thresholds of irrigation demands has been analyzed by running a chance constraint nonlinear programming model based on uncertain inflow data. The model was optimized using Microsoft Excel Solver. The lowest SSD and vulnerability, and the highest volumetric reliability were gained at irrigation deficit thresholds of 20 % under scenario I, 30 % under scenario II, III and V, and at 40 % under scenario IV when compensation release is permitted for downstream environment. These thresholds of deficits could be reduced by 10 % for all scenarios if compensation release is not permitted. In conclusion the reservoir water is not sufficient enough to meet 100 % irrigation demand for design command areas of 7,000 ha. The developed model could be used for real time reservoir operation decision making for similar reservoir irrigation systems. In this specific case study system, attempt should be made to evaluate the technical performance of the scheme and introduce a regulated deficit irrigation application.  相似文献   

12.
Water shortages and climate change are worldwide issues. Reduction in water leakage in distribution networks as well as the associated energy saving and environmental impacts have recently received increased attention by scientists and water industries. Pressure management has been proposed as a cost-effective approach for reduction in water leakage. This study conducted a real-world water pressure regulation experiment to establish the pressure-leakage relationship in a district metering area (DMA) of the water distribution network in Beijing, China. Results showed that flow into the DMA was sensitive to inlet water pressure. A 5.6 m reduction in inlet pressure (from 38.8 m to 33.2 m) led to an 83 % reduction (12.1 l/s) in minimal night flow, which is a good approximator of leakage. These reductions resulted in 62,633 m3 of water saved every year for every km pipe, as well as associated savings of 1.1?×?106 MJ of energy and 68 t of CO2 equivalent greenhouse gas emissions. The results of this study provide decision makers with advice for reducing leakage in water distribution networks with associated energy and environmental benefits.  相似文献   

13.
梁英 《红水河》2014,(4):25-28
清平水库主坝输水隧洞灌溉管为压力圆形钢管出流,原消能设计采用消力池,钢管出口射流对与消力池连接的渠道边墙产生剧烈冲击,受冲边墙基础被淘空,在墙后形成两个大塌坑,严重影响灌溉渠道的正常运行,整改后用冲击式消能箱,消能效果显著改善。冲击式消能箱具有消能效率高、工程投资省、施工简便、空间体积小等优点,对受地形、地质条件限制的有压管出流消能工程,冲击式消能箱具有推广运用价值。  相似文献   

14.
The objective of this article is to assess the potential for potable water savings in office buildings located in Florianópolis, southern Brazil. The embodied energy of four alternatives to reduce potable water demand, i.e., rainwater harvesting, greywater reuse, dual-flush toilets and water-saving taps, was also assessed. The analyses took into account the potable water end-uses for ten buildings. The potential for potable water savings by using rainwater, as well as, the rainwater tank sizing were estimated using computer simulation. As for greywater reuse, it was considered that greywater from lavatory taps could be treated and reused to flush toilets. The potential for potable water savings by using water-saving plumbing fixtures was estimated by considering the replacement of toilets and taps. In order to estimate the embodied energy in the main components, each system was dimensioned and embodied energy indices were applied. The main result is that the potential for potable water savings by using dual-flush toilets ranges from 21.6 % to 57.4 %; by reusing greywater, it ranges from 6.8 % to 38.4 %; by using rainwater, it ranges from 6.1 % to 21.2 %; by using water-saving taps it ranges from 2.7 % to 15.4 %. However, by considering the embodied energy, the average for the ten buildings indicates that dual-flush toilets are the best choice as it is possible to obtain water savings of 5.50 m3/month per GJ of embodied energy, followed, respectively, by water-saving taps, greywater reuse and rainwater usage. The main conclusion is that the assessment of embodied energy should be considered when evaluating potable water savings in buildings as it helps to identify the best alternatives to save more water while causing less environmental impact.  相似文献   

15.
MATLAB? software named PRESUD (Pressurized Subunit Design) was developed to identify the optimum solid set sprinkler irrigation subunit design with a criterion of minimizing the annual water application cost (CT). This CT is defined as the cost per cubic meter of water applied to the soil for crop use. In this study, only rectangular subunits are considered, using an iterative method for calculating the lateral and manifold pipelines. The results indicate that water cost (Cw), which includes the investment and operation costs for pumping water from the source to the subunit inlet, makes up 75 % of CT. Another important factor is energy cost, which comprises 14 % of CT. The remaining variables, such as sprinkler spacing and layout, or application rate (ARa), have a lower impact on CT. In cases of use groundwater, the proportion of energy cost in CW can reach 40 %; thus, energy is an important part of CT. Results shows that the criterion of limiting the maximum difference in pressure heads in the irrigation subunit (Δh?T, and the use of tools such as PRESUD can help obtain better solutions.  相似文献   

16.
The Egyptian Ministry of Water Resources and Irrigation (MWRI) has expressed concern about the current high cost of the Irrigation Improvement Project (IIP) implemented in the “old lands” of the lower reaches of the Nile River. Because the IIP is financed through fees paid by the direct beneficiaries of the project, i.e., irrigation water users, these same Egyptian agricultural producers are especially sensitive to the higher than expected costs that the project has incurred to date. The objective of the current study is to evaluate whether this cost reduction is associated with any deficiency in irrigation performance. This Monitoring and Evaluation (M&;E) study aims to answer questions such as: Does reducing pump capacity and increased pump operation affect the farmers negatively? And, does the use of electricity instead of diesel fuel affect the farmers positively? Six indicators were used to compare new design criteria in the W10 and the IIP1 irrigation system designs, water savings, irrigation cost, irrigation time, night irrigation, and land savings. The W10 project design achieved the minimum actual operating cost per unit of area and per unit of water compared to the IIP1 project design on both Meet Yazied and El-Mesk Canals. The total cost per unit of area in the W10 project design is lower than IIP1 by 19.33% and 24.92% on the Meet Yazied and El-Mesk Canals, respectively. The total cost per unit of water in the W10 design is also lower than IIP1 on the Meet Yazied and El-Mesk Canals. Average irrigation time for rice and cotton crops cultivated in the W10 area are higher than average irrigation time for these crops cultivated in the IIP1 area for all locations on the Mesqa (head, middle and tail), because of increased pump operation in the W10 area (16 to 20 h d???1). The number of irrigation events at the head of the Sefsafa Canal in the W10 area is higher than on the Meet Yazied and El-Mesk Canals in the IIP1 areas because of the increased pump operation in the W10 area.  相似文献   

17.
This research investigated the optimum on-farm water management methods for a summer crop (Maize). Water equity and productivity were optimized simultaneously by using genetic algorithms in Doroodzan Irrigation Network. Increase in water reduction fraction (WRF) (0.0 to 0.8) has the incremental effect on water equity (on average 19.4 %), however by increasing WRF, water productivity initially increased (on average 25.3 % at WRF?=?0.4) and then decreased. With increasing irrigation application efficiency (Ea) (40 to 90 %), the values of water equity and productivity increased by on average 52.8 and 91.5 %, respectively. Increment of conveyance efficiency of channels (Ec) (70 to 90 %) resulted in minimum incremental effect on water equity and productivity (on average 18.5 and 11.9 %, respectively). Furthermore, the values of performance measure decreased from wet water year to drought water year. Tape irrigation system was considered as the best choice at low quantities of WRF (<=0.4), however for higher values of WRF (>?=?0.6), sprinkler irrigation system was considered as the best choice for achieving higher values of water equity and productivity. Meanwhile, when equity and productivity were considered together for a specific method of deficit irrigation scheduling, under specified quantity of irrigation water, with increasing equity the water productivity reduction was negligible.  相似文献   

18.
Water demand for irrigated agriculture is increasing against limited availability of fresh water resources in the lower reaches of the Amu Darya River e.g., Khorezm region of Uzbekistan. Future scenarios predict that Khorezm region will receive fewer water supplies due to climate change, transboundary conflicts and hence farmers have to achieve their yield targets with less water. We conducted a study and used AquaCrop model to develop the optimum and deficit irrigation schedule under shallow groundwater conditions (1.0–1.2 m) in the study region. Cotton being a strategic crop in the region was used for simulations. Capillary rise substantially contributes to crop-water requirements and is the key characteristic of the regional soils. However, AquaCrop does not simulate capillary rise contribution, thereby HYDRUS-1D model was used in this study for the quantification of capillary rise contribution. Alongside optimal irrigation schedule for cotton, deficit strategies were also derived in two ways: proportional reduction from each irrigation event (scenario-A) throughout the growth period as well as reduced water supply at specific crop growth stages (scenario-B). For scenario-A, 20, 40, 50 and 60 % of optimal water was deducted from each irrigation quota whereas for scenario-B irrigation events were knocked out at different crop growth stages (stage 1(emergence), stage 2 (vegetative), stage 3 (flowering) and stage 4 (yield formation and ripening)). For scenario-A, 0, 14, 30 and 48 % of yield reduction was observed respectively. During stress at the late crop development stage, a reduced water supply of 12 % resulted in a yield increase of 8 %. Conversely, during stress at the earlier crop development stage, yield loss was 17–18 %. During water stress at the late ripening stage, no yield loss was observed. Results of this study provide guidelines for policy makers to adopt irrigation schedule depending upon availability of irrigation water.  相似文献   

19.
This article shows an application of a new algorithm, called kidney algorithm, for reservoir operation which employs three different operators, namely filtration, secretion, and excretion that lead to faster convergence and more accurate solutions. The kidney algorithm (KA) was used for generating the optimal operation of a reservoir namely; Aydoghmoush dam in eastern Azerbaijan province in Iran whose purpose was to decrease irrigation deficit downstream of the dam. Results from the algorithm were compared with those by other evolutionary algorithms, including bat (BA), genetic (GA), particle swarm (PSO), shark (SA), and weed algorithms (WA). The results showed that the kidney algorithm provided the best performance against the other evolutionary algorithms. For example, the computational time for the KA was 3 s, 2 s, 4 s, 6 s and 3 s less than BA, SA, GA PSA and WA, respectively. Also, the objective function for the optimization problem was the minimization of the irrigation deficits and its value for the KA was 55%, 28%, 52%, 44 and 54% less than GA, SA, WA, BA and PSA, respectively. Also, the different performance indexes showed the superiority of the KA compared to the other algorithms. For example, the root mean square error for the KA was 74%, 61%, 68%, 33 and 54% less than GA, SA, WA, BA and PSA, respectively. Different multi criteria decision models were used to select the best models. The results showed that the KA achieved the first rank for the optimization problem and thus, it shows a high potential to be applied for different problems in the field of water resources management.  相似文献   

20.
Recently, artificial neural networks (ANNs) have been used successfully for many engineering problems. This paper presents a practical way of predicting the hydropower energy potential using ANNs for the feasibility of adding a hydropower plant unit to an existing irrigation dam. Because the cost of energy has risen considerably in recent decades, addition of a suitable capacity hydropower plant (HPP) to the end of the pressure conduit of an existing irrigation dam may become economically feasible. First, a computer program to realistically calculate all local, frictional, and total head losses (THL) throughout any pressure conduit in detail is coded, whose end-product enables determination of the C coefficient of the highly significant model for total losses as: THL = C·Q 2. Next, a computer program to determine the hydroelectric energies produced at monthly periods, the present worth (PW) of their monetary gains, and the annual average energy by a HPP is coded, which utilizes this simple but precise model for quantification of total energy losses from the inlet to the turbine. Inflows series, irrigation water requirements, evaporation rates, turbine running time ratios, and the C coefficient are the input data of this program. This model is applied to randomly chosen 10 irrigation dams in Turkey, and the selected input variables are gross head and reservoir capacity of the dams, recorded monthly inflows and irrigation releases for the prediction of hydropower energy. A single hidden-layered feed forward neural network using Levenberg–Marquardt algorithm is developed with a detailed analysis of model design of those factors affecting successful implementation of the model, which provides for a realistic prediction of the annual average hydroelectric energy from an irrigation dam in a quick-cut manner without the excessive operation studies needed conventionally. Estimation of the average annual energy with the help of this model should be useful for reconnaissance studies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号