首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A novel hybrid (sequential) comprehensive 2D-multidimensional gas chromatography (GC × GC-MDGC) method for complex sample manipulation and separation is described. It incorporates a separation step that approximates slow modulation GC × GC, prior to microfluidic Deans switch heart-cutting of a targeted region(s) into a third analytical column. It allows discrete single or multiple components, bands or regions, or any combination of these to be selected and excised from within the 2D GC × GC separation space. The excised individual components can be further collected and studied. Alternatively, any unresolved or poorly resolved components, or regions that require further separation, can be transferred to an additional (third) column separation step. The method is applied to separation and quantitative analysis of oxygenates in a thermally stressed algae-derived biofuel oil by using flame ionization detection (FID), without any prefractionation. This permits oxygenated compounds to be fully resolved from saturated (matrix) compounds, which are completely excluded from the third column. Improved separation was obtained between target classes (aldehydes, 2-ketones, alcohols, acids). Excellent calibration linearity, and retention time and peak area reproducibility were obtained for 14 oxy-compounds present in trace amount in the complex biofuel matrix. Accuracy of microfluidic transfer to the third column, and the profile reproducibility before and after heart-cut operations, was demonstrated by extracting single components from a complex coffee volatile sample.  相似文献   

2.
Samuel C  Davis JM 《Analytical chemistry》2002,74(10):2293-2305
First-column gas chromatograms (GCs) of hundreds of flavor and fragrance compounds, and second-column GCs of specific regions of these GCs, are predicted using thermodynamic databases in commercial software. A statistical-overlap theory of column switching with cryogenic focusing then is developed by mimicking the predicted GCs by two kinds of Monte Carlo simulations. In the first kind, a probability distribution is calculated for the number of compounds in a region of the first-column GC, based on the number of observed peaks in the region, the number of observed peaks in the second-column GC, and the retention-time distributions and breadths of single-component peaks in both GCs. In the second kind, criteria are established for the theory's application. The theory is applied to 12 regions of first-column GCs. The theory predicts the number of compounds in all of them and shows that separation rarely is complete in second-column GCs, when 10 or more compounds are transferred between columns. The theory also rationalizes the tedious search required to find good separation conditions by showing that column-switching gas chromatography with cryogenic focusing is inherently statistical. The number of peaks in the second-column GC can be greater than, less than, or equal to the number of peaks in the relevant region of the first-column GC, and the good conditions sought by researchers to substantially improve separation correspond to favorable "rolls of the dice" found only by trial and error.  相似文献   

3.
The hyphenation of gas chromatography and mass spectrometry (GC/MS) revolutionized organic analysis. In GC/MS coupling, usually electron impact ionization is applied, and molecules are identified by their fragment pattern. Although mass spectrometry in principle is a separation method, it is used predominantly as a spectrometric technique. However, if soft (i.e., fragmentation-free) ionization techniques are applied, the inherent separation character of MS is emphasized, which has similarities to a GC boiling point separation. By combining polar column GC separation and fast soft ionization time-of-flight mass spectrometry technology, a comprehensive separation of complex petrochemical samples can be obtained (GC x MS approach). Compounds of comparable physical-chemical properties are characteristically grouped together in a two-dimensional retention time-m/z representation. This resembles the separation characteristics of comprehensive two-dimensional gas chromatography (GC x GC) and, thus, represents a novel multidimensional separation approach. In this work, a gas chromatograph equipped with a polar separation column was coupled to a home-built laser ionization time-of-flight mass spectrometer. Laser-based, single-photon ionization was used for universal soft ionization and resonance-enhanced multiphoton ionization for selective ionization of aromatic compounds. A novel capillary-jet inlet system was used for the coupling. Multidimensional comprehensive analysis of complex petrochemical hydrocarbon samples using gas chromatography coupled to mass spectrometry with soft and selective photo ionization sources is first demonstrated.  相似文献   

4.
A new instrumental approach for collection of retention index data in the first (1D) and second (2D) dimensions of a comprehensive two-dimensional (2D) gas chromatography (GCxGC) experiment has been developed. First-dimension indexes were determined under conventional linear programmed temperature conditions (Van den Dool indexes). To remove the effect that the short secondary column imposes on derived 1D indexes, as well as to avoid handling of pulsed GCxGC peaks, the proposed approach uses a flow splitter to divert part of the primary column flow to a supplementary detector to simultaneously generate a conventional 1D chromatogram, along with the GCxGC chromatogram. The critical 2D indexes (KovAts indexes) are based upon isovolatility curves of normal alkanes in 2D space, providing a reference scale against which to correlate each individual target peak throughout the entire GCxGC run. This requires the alkanes to bracket the analytes in order to allow retention interpolation. Exponential curves produced in the 2D separation space require a novel approach for delivery of alkane standards into the 2D column by using careful solvent-free solid-phase microextraction (SPME) sampling. Sequential introduction of alkane mixtures during GCxGC runs was performed by thermal desorption in a second injector which was directly coupled through a short transfer line to the entrance of the secondary column, just prior to the modulator so that they do not have to travel through the 1D column. Thus, each alkane mixture injection was quantitatively focused by the cryogenic trap, then launched at predetermined times onto the 2D column. The system permitted construction of an alkane retention map upon which bidimensional indexes of a 25-perfume ingredient mixture could be derived. Comparison of results with indexes determined in temperature-variable one-dimensional (1D) GC showed good correlation. Plotting of the separation power in the second dimension was possible by mapping Trennzahl values throughout the 2D space. The methodology was applied to the separation of a standard mixture composed of 25 analytes (very diverse in polarity and structure) suspected to be allergens in perfume samples. The method will allow straightforward determination of temperature-variable retention indexes of target analytes.  相似文献   

5.
A method producing simultaneously three retention indexes for compounds has been developed for comprehensive two-dimensional gas chromatography by using a dual secondary column approach (GC x 2GC). For this purpose, the primary flow of the first dimension column was equally diverted into two secondary microbore columns of identical geometry by means of a three-way flow splitter positioned after the longitudinally modulated cryogenic system. This configuration produced a pair of comprehensive two-dimensional chromatograms and generated retention data on three different stationary phases in a single run. First dimension retention indexes were determined on a polar SolGel-Wax column under linear programmed-temperature conditions according to the van den Dool approach using primary alcohol homologues as the reference scale. Calculation of pseudoisothermal retention indexes in both second dimensions was performed on low-polarity 5% phenyl equivalent polysilphenylene/siloxane (BPX5) and 14% cyanopropylphenyl/86% dimethylpolysiloxane (BP10) columns. To construct a retention correlation map in the second dimension separation space upon which KovAts indexes can be derived, two methods exploiting "isovolatility" relationships of alkanes were developed. The first involved 15 sequential headspace samplings of selected n-alkanes by solid-phase microextraction (SPME), with each sampling followed by their injection into the GC at predetermined times during the chromatographic run. The second method extended the second dimension retention map and consisted of repetitive introduction of SPME-sampled alkane mixtures at various isothermal conditions incremented over the temperature program range. Calculated second dimension retention indexes were compared with experimental values obtained in conventional one-dimensional GC. A case study mixture including 24 suspected allergens (i.e., fragrance ingredients) was used to demonstrate the feasibility and potential of retention index information in comprehensive 2D-GC.  相似文献   

6.
With comprehensive two-dimensional supercritical fluid and fast, independent temperature-programmed gas chromatography (SFCxGC), a polar column was used in the first dimension to achieve group-type analysis. The eluent of this separation was repetitively sampled and transferred to a fast, resistively heated gas chromatograph to obtain the boiling point distribution over the entire polarity separation. The SFC was operated isothermally with stopped flow to provide a sufficient time span for the GC analysis. The GC analysis had a typical cycle time of 1 min for the system demonstrated here. During this time, the GC column was independently heated at a rate of 450 degrees C/min to 250 degrees C and actively cooled again to -50 degrees C before the next GC injection took place. The analysis of petrochemical samples is presented to illustrate the technique.  相似文献   

7.
We report on a proof-of-principle experiment with a novel thermal modulation device with potential use in two-dimensional liquid chromatography (LC × LC) systems. It is based on the thermal desorption concept used in two-dimensional gas chromatography (GC × GC) systems. Preconcentration of neutral analytes eluting from the first dimension column is performed in a capillary "trap" column packed with highly retentive porous graphitic carbon particles, placed in an aluminum low-thermal-mass LC heating sleeve. Remobilization of the trapped analytes is achieved by rapidly heating the trap column, by applying temperature ramps up to +1200 °C/min. Compared to the nonmodulated signal, the presented thermal modulator yielded narrow peaks, and a concentration enhancement factor up to 18 was achieved. With a thermally modulated LC separation of an epoxy resin, it is shown that when the thermal modulation is applied periodically, the trapped and concentrated molecules can be released periodically and that the modulating interface can both serve as a preconcentration device and as an injector for the second dimension column of an LC × LC setup. Because of the thermal modulation, a high-molecular-weight epoxy resin could be adequately separated and the different fractions were identified with a GPC analysis, as well as an offline second dimension LC analysis.  相似文献   

8.
We report the first coupling of comprehensive two-dimensional gas chromatography (GC x GC) to online combustion isotope ratio mass spectrometry (C-IRMS). A GC x GC system, equipped with a longitudinally modulated cryogenic system (LMCS), was interfaced to an optimized low dead volume combustion interface to preserve <300 ms full width at half-maximum (fwhm) fast GC peaks generated on the second GC column (GC2). The IRMS detector amplifiers were modified by configuration of resistors and capacitors to enable fast response, and a home-built system acquired data at 25 Hz. Software was home-written to handle isotopic time shifts of less than one bin (40 ms) and to integrate peak slices to recover isotope ratios from cryogenically sliced peaks. The performance of the GC x GCC-IRMS system was evaluated by isotopic analysis of urinary steroid standards. Steroids were separated by a nonpolar GC1 column (30 m x 0.25 mm, 5% phenyl), modulated into multiple 4- or 8-s cryogenic slices by the LMCS, and then separated on a polar GC2 column (1 or 2 m x 0.1 mm, 50% phenyl). GC2 peak widths from a 1-m column averaged 276 ms fwhm. Steroid standard sliced peaks were successfully reconstructed to yield delta(13)C VPDB values with average precisions of SD(delta(13)C) = 0.30 per thousand and average accuracies within 0.34 per thousand, at 8 ng on column. Two steroids, coeluting in GC1, were baseline separated in GC2 and resulted in delta(13)C VPDB values with average precisions of SD(delta(13)C) = 0.86 per thousand and average accuracies within 0.26 per thousand, at 3 ng on column. Results from this prototype system demonstrate that the enhanced peak capacity and signal available in GC x GC is compatible with high-precision carbon isotope analysis.  相似文献   

9.
This work describes the realization of rapid switching between hard electron ionization (EI) and soft single-photon ionization (SPI) integrated in a compact orthogonal acceleration time-of-flight mass spectrometer. Vacuum-ultraviolet (VUV) photons of 9.8 eV (126 nm) emitted from the innovative electron-beam-pumped rare-gas excimer light source (EBEL) filled with argon are focused into the ion chamber by an ellipsoidal mirror optic for accomplishing of SPI. This novel orthogonal acceleration time-of-flight mass spectrometer with switching capability was hyphenated to one-dimensional gas chromatography (GC) and comprehensive two-dimensional (2D) gas chromatography (GC × GC) for the first time. Within this demonstration study, a maximum switching frequency of 80 Hz was applied for investigation of a mineral-oil-type diesel sample. This approach allows the quasi-simultaneous acquisition of complementary information about the fragmentation pattern (EI) as well as the molecular mass (SPI) of compounds within a single analysis. Furthermore, by application of a polar GC column for separation, the SPI data can be displayed in a 2D contour plot, leading to a comprehensive 2D characterization (GC × MS), whereas the typical group-type assignment for diesel is also met.  相似文献   

10.
We report on a cryogenic trapping procedure that functions without the use of liquid cryogens at a trapping temperature of -150 degrees C. A heat-transfer device was designed that links a commercially available closed-cycle refrigerator to a cryotrap made of a glass-coated steel tube filled with Chromosorb W adsorbent material. This forms part of an analytical system incorporating GC separation with subsequent FPD detection, used for the analysis of carbonyl sulfide. The recovery is greater than 95% for trapping times up to 30 min. The analytical performance is excellent with both accuracy and precision better than 2%. Equipped with the new cryogenic trapping device, the measurement system is capable of continuous operation over a period of several weeks.  相似文献   

11.
Data from comprehensive two-dimensional (2-D) separation techniques, such as comprehensive 2-D gas chromatography (GC x GC), liquid chromatography/liquid chromatography (LC x LC) and liquid chromatography/ capillary electrophoresis (LC x CE) can be readily analyzed by various chemometric methods to increase chemical analysis capabilities. A retention time alignment, preprocessing method is presented that objectively corrects for run-to-run retention time variations on both separation dimensions of comprehensive 2-D separations prior to application of chemometric data analysis algorithms. The 2-D alignment method corrects for run-to-run shifting of a sample data matrix relative to a standard data matrix on both separation time axes in an independent, stepwise fashion. After 2-D alignment, the generalized rank annihilation method (GRAM) is successfully applied, substantiating the performance of the alignment method. The alignment method should have important implications, because most 2-D separation techniques exhibit, in the context of chemometric data analysis, considerable run-to-run retention time shifting on both dimensions. Even when there are only three to four points/peak, that is, with three to four separations on the second dimension (column 2) per peak width from the first dimension (column 1), the 2-D alignment coupled with GRAM provides dependable analyte peak identification capabilities and adequate quantitative precision for unresolved analyte peaks. Thus, the 2-D alignment algorithm is applicable to lower data density conditions, which broadens the scope of chemometric analysis to high-speed 2-D separations.  相似文献   

12.
The fast separation of a mixture of 29 compounds by using comprehensive two-dimensional gas chromatography is reported. Capillary column sets with shorter lengths and smaller inner diameter in both the first and second dimensions have been tested, for both fast chiral and achiral separations. Fast chiral separations, which included enantiomer separations of limonene, linalool, citronellol, and alpha-isomethylionone, were achieved within 23 min, which corresponds to approximately 2-fold faster than analyses under conditions previously considered as normal. Fast achiral separations, which do not have the restriction of requiring a minimum quality of chiral resolution, were obtained within 5 min, which is markedly faster than separations on the normal column set under conditions more commonly employed. The achiral fast GC x GC method used a 5 m x 0.1 mm i.d. first dimension column, interfaced to a 0.3 m x 0.05 mm i.d. second column, with temperature program rate of 35 degrees C.min-1; a modulation period of 1 s was employed. Peak widths at baseline on the first column were a little over 1 s, while modulated peak widths at half-height recorded with a flame ionization detector operating at 200 Hz were approximately 30 ms. The benefits and limitations of GC x GC for fast chiral and achiral separations are reported and discussed.  相似文献   

13.
采用无载带气的单维低温色谱分离技术,从制备流程设计出发,对分离方法、吸附材料、柱径柱长和操作参数进行了选择,并以氘丰度约为1.4×10-4的天然高纯氢为原料,在1 h之内成功制备出满足使用要求的贫氘氢样品.  相似文献   

14.
The term "orthogonal" in comprehensive two-dimensional gas chromatography (GC × GC) has a double sided meaning as it stands for a separation resulting from the combination of two independent retention mechanisms (Giddings, J. C. J. High Resolut. Chromatogr. 1987, 10, 319) but also for a 2D separation where the components are evenly distributed over the entire 2D space. It is shown in the present study that a nonorthogonal GC × GC system associating a polar stationary phase in the first dimension (poly(ethylene glycol)) to a nonpolar one in the second dimension (poly(dimethyl siloxane)) leads to a structured chromatogram, a high peak capacity, and a great 2D space occupation. This idea is demonstrated through the characterization of oxygenated compounds in a coal-derived middle distillate. Results show a clear separation between oxygenated species and hydrocarbons which are classified into linear alkanes, cyclic alkanes, and aromatics. A breakthrough configuration combining a polar poly(ethylene glycol) first dimension and a trifluoropropyl methyl stationary phase in the second dimension enabled a unique identification and quantification of linear, cyclic, and aromatic alcohols. This configuration which could be considered as nonorthogonal still involves two different retention mechanisms: polarity and boiling point in the first dimension and electronic interactions in the second dimension. It is selective toward electronegative poles of alcohols and phenols. The contributions of these two configurations compared to a conventional orthogonal system as well as their roles for oxygenated compounds speciation are highlighted. This contribution is measured through three 2D space occupation factors. It appears through these two examples that orthogonality is intimately linked to analyte properties, and a general concept of dimensionality must be considered.  相似文献   

15.
Development of a comprehensive, three-dimensional gas chromatograph (GC3) instrument is described. The instrument utilizes two six-port diaphragm valves as the interfaces between three, in-series capillary columns housed in a standard Agilent 6890 gas chromatograph fitted with a high data acquisition rate flame ionization detector. The modulation periods for sampling column one by column two and column two by column three are set so that a minimum of three slices (more commonly four or five) are acquired by the subsequent dimension resulting in both comprehensive and quantitative data. A 26-component test mixture and quantitative standards are analyzed using the GC3 instrument. A useful methodology for three-dimensional (3D) data analysis is evaluated, based on the chemometric technique parallel factor analysis (PARAFAC). Since the GC3 instrument produces trilinear data, we are able to use this powerful chemometric technique, which is better known for the analysis of two-dimensional (2D) separations with multichannel detection (e.g., GC x GC-TOFMS) or multiple samples (or replicates) of 2D data. Using PARAFAC, we mathematically separate (deconvolute) the 3D data "volume" for overlapped analytes (i.e., ellipsoids), provided there is sufficient chromatographic resolution in each of the three separation dimensions. Additionally, PARAFAC is applied to quantify analyte standards. For the quantitative analysis, it is demonstrated that PARAFAC may provide a 10-fold improvement in the signal-to-noise ratio relative to a traditional integration method applied to the raw, baseline-corrected data. The GC3 instrument obtains a 3D peak capacity of 3500 at a chromatographic resolution of one in each separation dimension. Furthermore, PARAFAC deconvolution provides a considerable enhancement in the effective 3D peak capacity.  相似文献   

16.
Comprehensive two-dimensional gas chromatography can be viewed as a traditional gas chromatography with a sophisticated "elution-resolved" flame ionization detector (GC/FID) or a detector with separation capability. The concept of multidimensional chromatography can be extended to other detectors that also have separation capability, such as ultraviolet, infrared, and mass spectrometer. Mass spectrometry, combined with gas chromatography, GC/MS, has been a powerful separation/identification device for many years. However, if one applies the multidimensional separation concept to this combination with a nonfragmentation ionization method, GC/MS not only can be used as a separation/identification tool, but also a two (multiple) dimensional separation device, GCxMS. In this study, a two-dimensional separation (GCxMS) study of diesel composition is demonstrated and compared with the GCxGC technique. The major advantage of GCxMS is the compound class separation. The compound groups within a compound class are also well-separated on the basis of their parent masses. Because of the exact mass operation, the specific element containing compound distribution can also be generated through the extraction of specific mass groups. For qualitative analysis, GCxMS is a technique where one experiment can generate a wide range of information. GCxMS may also perform quantitative analysis when appropriate response factors for various compound groups are available. From GCxGC to GCxMS, the power of two (multiple) dimensional separation has just started exposing its advantages for complex mixture analysis. To achieve multiple dimensional separation in different forms, many improvements remain to be made. The challenge now is to combine/accommodate two or more different techniques to solve a specific complex separation problem. The GCxMS experience has pushed this effort one step ahead toward complete application of this new concept in the analysis of complex mixtures.  相似文献   

17.
A novel gas valve inlet system for gas chromatography is described. The device incorporates a capillary sample gas delivery tube containing a small orifice in its side from which sample vapor continuously flows. A precision micro stepper motor is used to translate the sample delivery tube parallel to its axis so that the orifice passes by the end of the fused silica separation column. The inlet end of the column and the sample delivery tube are housed in a pressurized injection port which also contains purge flows to vent sample between injections. Two operating modes are described. In the sweep mode, the orifice sweeps past the column end at a constant, adjustable velocity. In the park mode, the orifice is parked in front of the column end for a software selectable time. Injection sample size and bandwidth are adjustable. Bandwidths (σ) as small as a few milliseconds make the inlet suitable for high-speed gas chromatography as well as conventional GC.  相似文献   

18.
A comprehensive two-dimensional (2D) retention time alignment algorithm was developed using a novel indexing scheme. The algorithm is termed comprehensive because it functions to correct the entire chromatogram in both dimensions and it preserves the separation information in both dimensions. Although the algorithm is demonstrated by correcting comprehensive two-dimensional gas chromatography (GC x GC) data, the algorithm is designed to correct shifting in all forms of 2D separations, such as LC x LC, LC x CE, CE x CE, and LC x GC. This 2D alignment algorithm was applied to three different data sets composed of replicate GC x GC separations of (1) three 22-component control mixtures, (2) three gasoline samples, and (3) three diesel samples. The three data sets were collected using slightly different temperature or pressure programs to engender significant retention time shifting in the raw data and then demonstrate subsequent corrections of that shifting upon comprehensive 2D alignment of the data sets. Thirty 12-min GC x GC separations from three 22-component control mixtures were used to evaluate the 2D alignment performance (10 runs/mixture). The average standard deviation of first column retention time improved 5-fold from 0.020 min (before alignment) to 0.004 min (after alignment). Concurrently, the average standard deviation of second column retention time improved 4-fold from 3.5 ms (before alignment) to 0.8 ms (after alignment). Alignment of the 30 control mixture chromatograms took 20 min. The quantitative integrity of the GC x GC data following 2D alignment was also investigated. The mean integrated signal was determined for all components in the three 22-component mixtures for all 30 replicates. The average percent difference in the integrated signal for each component before and after alignment was 2.6%. Singular value decomposition (SVD) was applied to the 22-component control mixture data before and after alignment to show the restoration of trilinearity to the data, since trilinearity benefits chemometric analysis. By applying comprehensive 2D retention time alignment to all three data sets (control mixtures, gasoline samples, and diesel samples), classification by principal component analysis (PCA) substantially improved, resulting in 100% accurate scores clustering.  相似文献   

19.
A comprehensive two-dimensional gas chromatography (GC x GC) system (for convenience defined as "split flow" GC x GC), which may be operated at improved gas linear velocities in both dimensions, has been developed. The setup is formed of an apolar 30 m x 0.25 mm i.d. column connected, by means of a Y press fit, to a detector-linked 1 m x 0.1 mm i.d. polar analytical column, which passes through the (cryogenic) modulator, and to a 0.3 m x 0.1 mm i.d. retention gap, which is connected to a manually operated split valve. The latter enables the regulation of gas flows through the second analytical column [e.g., 60:40 (FID) ratio, 50:50 ratio, 40:60 (FID) ratio, etc.], in order to generate the most appropriate gas linear velocity, which is related to each specific analysis. In the pre-sent investigation, two sets of traditional and split flow GC x GC analyses were carried out on a cod liver oil fatty acid methyl ester sample by using the same temperature programs [180-250 degrees C at (a) 3 degrees C/min and at (b) 1.3 degrees C/min] and at an average first-dimension linear velocity of approximately 35.0 cm/s; thus, primary column retention times (and therefore elution temperatures) were essentially maintained. The second-dimension linear velocity was calculated to be approximately 333 cm/s in the traditional applications, while it was split valve-regulated until the most appropriate values [(a) approximately 213 cm/s; (b) approximately 264 cm/s] were attained in the alternative applications. Substantial improvements were observed and measured in the chromatography along the y-axis, while the contour plot chemical class structure was maintained.  相似文献   

20.
The use of flow splitters between the two dimensions in online comprehensive two-dimensional (2D) liquid chromatography (LC × LC) has not received very much attention, in comparison with their use in 2D gas chromatography (GC × GC), where they are quite common. In principle, splitting the flow after the first dimension column and performing online LC × LC on this constant fraction of the first dimension effluent should allow the two dimensions to be optimized almost independently. When there is no flow splitting, any change in the first-dimension flow rate has an immediate impact on the second dimension. With a flow splitter, one could, for example, double the flow rate into the first dimension column and perform a 1:1 flow split without changing the sample loop size or the sampler's collection time. Of course, the sensitivity would be diminished, but this can be partially compensated through the use of a larger injection; this will likely only amount to a small price to pay for this increased resolving power and system flexibility. Among other benefits, we found a 2-fold increase in the corrected 2D peak capacity and the number of observed peaks for a 15-min analysis time, using a post-first-dimension flow splitter. At a fixed analysis time, this improvement results primarily from an increase in the gradient time, resulting from the reduced system re-equilibration time, and, to a smaller extent, it is due to the increased peak capacity achieved by full optimization of the first dimension.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号