首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effect on the γ-Al2O3-to-α-Al2O3 phase transition of adding divalent cations was investigated by differential thermal analysis, X-ray diffractometry, and surface-area measurements. The cations, Cu2+, Mn2+, Co2+, Ni2+, Mg2+, Ca2+, Sr2+, and Ba2+, were added by impregnation, using the appropriate nitrate solution. These additives were classified into three groups, according to their effect: (1) those with an accelerating effect (Cu2+ and Mn2+), (2) those with little or no effect (Co2+, Ni2+, and Mg2+), and (3) those with a retarding effect (Ca2+, Sr2+, and Ba2+). The crystalline phase formed by reaction of the additive with γ-Al2O3 at high temperature was a spinel-type structure in groups (1) and (2) and a magnetoplumbite-type structure in group (3). In groups (2) and (3), a clear relationship was found between the transition temperature and the difference in ionic radius of Al3+ and the additive (Δ r ): The transition temperature increased as Δ r increased. This result indicates that additives with larger ionic radii are more effective in suppressing the diffusion of Al3+ and O2− in γ-Al2O3, suppressing the grain growth of γ-Al2O3, and retarding the transformation into α-Al2O3.  相似文献   

2.
The effect of monovalent cation addition on the γ-Al2O3-to-α-Al2O3 phase transition was investigated by differential thermal analysis, powder X-ray diffractometry, and specific-surface-area measurements. The cations Li+, Na+, Ag+, K+, Rb+, and Cs+ were added by an impregnation method, using the appropriate nitrate solution. β-Al2O3 was the crystalline aluminate phase that formed by reaction between these additives and Al2O3 in the vicinity of the γ-to-α-Al2O3 transition temperature, with the exception of Li+. The transition temperature increased as the ionic radii of the additive increased. The change in specific surface area of these samples after heat treatment showed a trend similar to that of the phase-transition temperature. Thus, Cs+ was concluded to be the most effective of the present monovalent additives for enhancing the thermal stability of γ-Al2O3. Because the order of the phase-transition temperature coincided with that of the formation temperature of β-Al2O3 in these samples, suppression of ionic diffusion in γ-Al2O3 by the amorphous phase containing the added cations must have played an important role in retarding the transition to α-Al2O3. Larger cations suppressed the diffusion reaction more effectively.  相似文献   

3.
The effect of Cr and Fe in solid solution in γ-Al2O3 on its rate of conversion to α-Al2O3 at 1100°C was studied by X-ray diffraction. The δ form of Al2O3 was the principal intermediate phase produced from both pure γ-Al2O3 and that containing Fe3+ in solid solution, although addition of Fe greatly reduced crystallinity. Reflectance spectra and magnetic susceptibilities showed that Cr exists as Cr6+ in γ-Al2O3 and as Cr3+ in α-Al2O3, with θ-Al2O3 as the intermediate phase. The intermediates formed rapidly, and the rates of their conversion to α-Al2O3 were increased by 2 and 5 wt% additions of Fe and decreased by 2 and 4 wt% additions of Cr. An approximately linear relation observed between α-Al2O3 formation and decrease in specific surface area was only slightly affected by the added ions. This relation can be explained by a mechanism in which the sintering of δ- or θ-Al2O3, within the aggregates of their crystallites, is closely coupled with conversion of cubic to hexagonal close packing of O2- ions by synchro-shear.  相似文献   

4.
Isothermal transformation kinetics and coarsening rates were studied in unseeded and alpha-Al2O3-seeded γ-Al2O3 powders heated in dry air and water vapor. Unseeded samples heated in dry air transformed to alpha-Al2O3 with an activation energy of 567 kJ/mol. Seeding with alpha-Al2O3 increased the transformation rates and reduced incubation times by providing low-energy sites for nucleation/growth of the alpha-Al2O3 transformation. The activation energy for the transformation was reduced to 350 kJ/mol in seeded samples heated in dry air. Seeded samples completely transformed to alpha-Al2O3 after 1 h at 1050°C when heated in dry air compared to 1 h at 925°C when heated in saturated water vapor. The combined effects of a lower nucleation barrier due to seeding and the increased diffusion due to water vapor reduced the activation energy for the transformation by 390 kJ/mol and the transformation temperature by ∼225°C compared to the unseeded samples heated in dry air. The accelerated kinetics is believed to be due to increased surface diffusion.  相似文献   

5.
Nanocrystalline α-Al2O3 ceramic powders have been prepared from an aqueous solution of aluminum nitrate and sucrose. Soluble Al ion-sucrose solution forms the precursor material once it is completely dehydrated. Heat treatment of the dehydrated precursors at low temperature (600°C) results in the formation of porous single-phase α-Al2O3. The precursor and heat-treated powders have been characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), and BET surface area analysis. The phase-pure nanocrystalline α-Al2O3 particles had an average specific surface area of >190 m2/g, with an average pore size between 18 and 25 nm.  相似文献   

6.
The subsolidus compatibility relations in the system SrO-B2O3- SiO2 were determined by solid-state reaction techniques and X-ray powder diffraction methods. The system was found to contain 11 subsolidus compatibility relations, one stable ternary compound (Sr3B2SiO8), and one metastable ternary compound with a probable composition SrB2Si2O8.  相似文献   

7.
The specific system of interest is the polyacrylic acid (PAA) and (0001) α-Al2O3 surface, which was modeled and simulated by Cerius2 4.9 software with empirical potentials. The simulation predicted that the adsorbed conformations of PAA with a molecular weight ( M w) of 5000 were train and tail at pH <4 and >10, respectively. After gradually inserting additional PAA molecular chains, the adsorption reached a saturated amount. Gel permeation chromatography experimental results showed that the adsorption amount at pH 3.6 was three times greater than that at pH 11. Based on the results from simulations and experiments, a successively increasing pH environment was modeled to illustrate the possibility of optimizing electro-steric effects by combining the higher adsorption density at a lower pH and strong steric repulsion of tail-adsorbed configuration at a higher pH.  相似文献   

8.
9.
The structure of Na- and Ca-β"-Al2O3 coatings on α-Al2O3 single-crystal platelets has been studied by optical and electron microscopy and X-ray and electron diffraction. The growth features and potential interface weakening effects of the modified platelets in dispersed-particle reinforced composites are discussed.  相似文献   

10.
The free energy of reaction for the formation of mullite from its oxide components was derived from equilibrium studies in the system CoO-Al2O3-SiO2. Within this system there appears, at solidus temperature in a certain composition area, the phase assemblage mullite + silica + spinel (= cobalt aluminate) + liquid. Determination of the oxygen pressure of a gas phase at which metallic cobalt precipitates from this phase assemblage and from the phase assemblage spinel (= cobalt aluminate) + corundum in the system CoO-Al2O3 permits calculation of ΔG° for the reaction 3Al2O3+ 2SiO2= Al6Si2O13. The value obtained at 1422°C is -5.8 kcal.  相似文献   

11.
Titanium-doped α-Al2O3 exhibits a high-temperature conductivity which is ionic at high oxygen pressures and electronic at low oxygen pressures. Both are isotropic. The temperature dependence of conductivity under conditions where equilibrium with the atmosphere is not maintained indicates both the position of the energy level of titanium (TiAlx) in the forbidden gap and the temperature dependence of the mobility of the native ionic defects (Al vacancies, V Alm). Optical absorption responsible for the pink color of the reduced crystals is measured as a function of p o2 and is used to determine concentrations of Ti3+ and Ti4+. Parameters for the equilibrium constants of the reactions involving electrons by which the composition of Al2O3:Ti and undoped Al2O3 is varied are determined. The chemical diffusion data by Jones et al. are described quantitatively.  相似文献   

12.
13.
Comparison of the energy of formation per defect, as deduced from experimental results on α-Al2O3 doped with donors and acceptors on the basis of various models, with theoretical values calculated by Dienes et al . for various disorder models shows closest correspondence of the exFrimentd values with the smallest theoretical values (obtained for Schottky disorder). This indicates that the theoretical results are reliable and that Schottky disorder is the major type of atomic disorder in α-Al2O3. Creep data on Al2O3:Fe by Hollenberg and Gordon make it possible to determine the enthalpy of Frenkel disorder of Al.  相似文献   

14.
The conductivity of single crystals of Al2O3+ Mg and the ionic and electronic transference numbers were measured at high temperatures as a function of orientation, oxygen pressure, and temperature. Optical absorption in the visible range was measured on cooled annealed crystals. The results are interpreted on the basis of a model with either Ali3- or V O as the dominant native defects and lead to expressions for the ionic mobility as a function of T and orientation, and for the position of the MgAl'level in the forbidden gap.  相似文献   

15.
Through the execution of experimental investigation, thermogravimetry, X-ray diffractometry, Fourier transform-infrared spectrometry, transmission electron microscopy, and energy-dispersive spectrometry, a variant reaction mechanism model was proposed for the solid-state reaction between SrCO3 and Al2O3/AlOOH for formation of SrAl2O4 material. The solid-state reaction is observed to be dependent on the calcination temperature. At temperatures lower than the transformation temperature of SrCO3 from orthorhombic to hexagonal (920°C), the reaction is attributed to the interfacial reaction between SrCO3 and alumina. Conversely, at temperatures higher than that, the solid-state reaction is dominated by the diffusion of Al3+ ions into the SrCO3 lattice. In this mechanism, two metastable species, hexagonal SrCO3 and hexagonal SrAl2O4, were observed. The activation energies of SrCO3 decomposition in the solid-state reaction also support these results. The interfacial reaction at low temperatures is characterized by a high activation energy of ∼130 kJ/mol; whereas, in the reaction at higher temperatures, the activation energy of SrCO3 decomposition decreases to 34 kJ/mol.  相似文献   

16.
After high-temperature reaction between Al2O3 and TiO2 crystals, precipitates found in rutile were characterized by electron microprobe and X-ray diffraction methods and by optical and electron microscopy. The precipitates were identified as α-Al2O4. Geometric and crystallographic orientation relations with the TiO2 matrix constitute a reverse case of rutile precipitation in star sapphire .  相似文献   

17.
Compensation of single-crystal, acceptor-dominated samples of α-Al2O3 by hydrogen leads to samples showing conductivity by protons, electrons, holes, Al‴i, and V ‴Al Values of the partial conductivities as a function of temperature are used to determine the parameters of native ionic and electronic disorder.  相似文献   

18.
Liquidus temperatures are presented for mixtures in the system MgO-FeO-Fe2O3-SiO2. The standard quenching technique was modified for work under controlled atmospheres of varying O2 pressures. Data were obtained for the temperature range 1159° to 1775°C., and with O2 pressures ranging from 1 to 10-8.9 atm. Approximate compositions of crystalline phases were determined, and paths of equilibrium crystallization were derived for selected mixtures under idealized conditions. Application of the phase diagrams to steel-plant refractories problems is indicated.  相似文献   

19.
The possibility of eliminating finger or vermicular growth of α-Al2O3 particles obtained by calcination of boehmite was examined. Heterogeneous precipitation of boehmite in a well-dispersed θ-Al2O3 suspension was first prepared, in which the mass ratio of boehmite to θ-crystallite was evaluated to form agglomerates of similar sizes that will form α-Al2O3 crystallites of <100 nm in diameter. θ- to α-phase transformation of alumina experiences a nucleation and growth mechanism, with the critical size of nucleation being ∼25 nm for θ-Al2O3 and the size for accomplishment of transformation followed by finger growth being ∼100 nm. Hence, fabricating agglomerates that would form α-Al2O3 crystallites with sizes <100 nm accompanied with appropriate thermal treatments can be a method for obtaining α-Al2O3 crystallites free of finger growth. It is found that proper preparation of the agglomerate with appropriate size may initiate a simultaneous and lower temperature θ- to α-Al2O3 phase transformation for such powder systems, substantially limiting the mass transfer among the newly formed α-Al2O3 particles. Moreover, α-Al2O3 crystallites free of finger growth can be obtained.  相似文献   

20.
The system Li2O-Cr2O3–SiO2 contains one previously reported ternary compound, LiCrSi2O6. Six subsolidus compatibility triangles and six ternary invariant points were located. The highest solidus, temperature is 1283°C, but liquidus temperatures are much higher for many compositions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号