首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The glutamate analogue kainic acid was injected into the hippocampus of intact or 6-hydroxydopamine deafferented rats to investigate the influence of hippocampal neurons on the expression of dopamine D1 and D2 receptor mRNAs in subregions of the striatal complex and possible modulation by dopaminergic neurons. Quantitative in situ hybridization using 35S-labeled oligonucleotide probes specific for dopamine D1 and D2 receptor mRNAs, respectively, were used. It was found that an injection of kainic acid into the hippocampal formation had alone no significant effect on dopamine D1 or D2 receptor mRNA levels in any of the analyzed striatal subregions in animals analyzed 4 h after the injections. Kainic acid stimulation in the hippocampus ipsilateral to the dopamine lesion produced an increase in D1 receptor mRNA levels in the ipsilateral medial caudate-putamen, and a bilateral increase in core and shell of nucleus accumbens (ventral striatal limbic regions). A unilateral 6-hydroxydopamine lesion alone caused an increase in D2 receptor mRNA in the lateral caudate-putamen (dorsal striatal motor region) ipsilateral to the lesion and an increase in D1 receptor mRNA in the accumbens core ipsilateral to the lesion. However, in dopamine-lesioned animals, dopamine D1 receptor mRNA levels were increased bilaterally in nucleus accumbens core and shell and in the ipsilateral medial caudate-putamen following kainic acid stimulation in the hippocampus ipsilateral to the dopamine lesion. These results indicate a differential regulation of the expression of dopamine D1 and D2 receptor mRNAs by midbrain and hippocampal neurons.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
This study examined the effect of repeated treatment with the antidepressant drugs, fluoxetine, desipramine and tranylcypromine, on dopamine receptor expression (mRNA and binding site density) in sub-regions of the nucleus accumbens and striatum of the rat. The effect of these treatments on extracellular levels of dopamine in the nucleus accumbens was also measured. Experiments using in situ hybridisation showed that the antidepressants caused a region-specific increase in D2 mRNA, this effect being most prominent in the nucleus accumbens shell. In contrast, none of the treatments increased D1 mRNA in any of the regions examined. Measurement of D2-like binding by receptor autoradiography, using the ligand [3H]YM-09151-2, revealed that both fluoxetine and desipramine increased D2-like binding in the nucleus accumbens shell; fluoxetine had a similar effect in the nucleus accumbens core. Tranylcypromine, however, had no effect on D2-like binding in the nucleus accumbens but decreased binding in the striatum. In micro-dialysis experiments, our data showed that levels of extracellular dopamine in the nucleus accumbens were not altered in rats treated with either fluoxetine or desipramine, but increased by tranylcypromine. From our findings, we propose that the antidepressant drugs tested enhance dopamine function in the nucleus accumbens through either increased expression of post-synaptic D2 receptors (fluoxetine and desipramine) or increased dopamine release (tranylcypromine).  相似文献   

3.
The role of the dopamine D3 receptor subtype in the central nervous system is still not well understood. It has a distinct and restricted distribution, mostly associated with limbic territories of the striatum (olfactory tubercle and the shell of nucleus accumbens) in rat brain. Dopaminergic denervation induced by a 6-hydroxydopamine lesion of the nigrostriatal system in rat down-regulates the expression of the D3 receptor. In the present study, we investigated the functional neuroanatomy of the dopamine D3 receptor subtype in the monkey (Macaca fascicularis) basal ganglia. We also studied the effect of administration of the dopaminergic neurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) and chronic D1-like (SKF 82958) or D2-like (cabergoline) agonist treatments on dopamine D3 receptor levels using receptor autoradiography. Our results clearly show that the distribution of D3 receptors in the monkey is more closely related to associative and limbic components of the striatum (caudate-putamen), as compared with its sensorimotor counterpart. Hence, D3 receptors may be more specifically involved in cognitive and motivational aspects of striatal functions, which are elaborated in prefrontal, temporal, parietal, cingulate and limbic cortices. Moreover, MPTP administration significantly decreased levels of D3 receptors and this effect was reversed or compensated by a chronic treatment with a D1-like, but not a D2-like, receptor agonist. The D3 receptor may represent an important target for adjunct or direct therapy designed to improve cognitive deficits observed in patients with Parkinson's disease, schizophrenia and other illnesses with frontal lobe cognitive disturbances.  相似文献   

4.
To localize the gene expression of AT2 angiotensin II receptors in rat brain we performed in situ hybridization histochemistry using 35S-labeled antisense riboprobes. The AT2 receptor mRNA expression pattern was compared in consecutive brain sections, from 2 week old rats, with the receptor expression by means of [125I]Sar1-ANG II binding and displacement with AT2 selective ligands followed by autoradiography. Expression of AT2 receptor mRNA was found in several thalamic nuclei (ventral posterolateral, mediodorsal, central medial, paracentral, and paraventricular), the medial geniculate nuclei, the nucleus of the optic tract, the subthalamic nucleus, the interposed nucleus of the cerebellum, and in the inferior olive. In these areas the AT2 receptor gene expression corresponds well with [125I]Sar1-ANG II binding. In addition, AT2 receptor mRNA expression was found in the red nucleus where no [125I]Sar1-ANG II binding was present. No significant hybridization of the AT2 receptor antisense probe was found in septal nuclei, the locus coeruleus, the dorsolateral geniculate nucleus, or the cerebellar cortex, areas rich in [125I]Sar1-ANG II binding. Our results indicate that some brain regions may be involved in AT2 receptor formation, transporting the receptor protein to other brain areas. However, in most structures, both the formation and expression of receptors occur, suggesting the existence of local AT2 receptor circuits, or that of AT2 autoreceptors. Other structures express only the receptor protein, indicating that these AT2 receptors are produced elsewhere. Our present data are the basis for further studies on the clarification of AT2 receptor pathways in the brain.  相似文献   

5.
Receptor binding autoradiography, using the selective ligand [3H]7-OH-(R)DPAT (R(+)-2-dipropylamino-7-hydroxy 1,2,3,4-tetrahydronaphthalene), showed that piribedil is a potent inhibitor at dopamine D3 receptors in limbic regions (island of Calleja), with affinity (IC50) between 30 and 60 nM. The in vitro IC50 of piribedil for inhibition of [3H]spiperone binding to receptors of the dopamine D2-like family (D2, D3 and D4), ranged between 10(-7) and 10(-6) M in different brain regions (medial and lateral caudate putamen, olfactory tubercles, and nucleus accumbens). At the highest concentration tested (10(-5 M) piribedil inhibited dopamine D1 receptor binding by < 50%. It is concluded that piribedil has 20 times higher affinity for dopamine D3 than for dopamine D2-like receptors, and very low affinity for the dopamine D1 receptor subtype in rat brain. How this pattern of receptor affinity is related to the pharmacological profile of piribedil deserves further investigation.  相似文献   

6.
Dopaminergic and glutamatergic inputs play an important role in regulating the activity of GABAergic neurons in basal ganglia. To understand more fully the biochemical interactions between these neurotransmitter systems, the effects of blocking dopamine and glutamate (N-methyl-D-aspartate) (NMDA) receptors on the expression of glutamic acid decarboxylase (GAD) mRNA were examined. Persistent blockade of dopamine receptors was achieved by daily injections of EEDQ, a relatively non-selective irreversible D1 and D2 dopamine receptor antagonist, or FNM, a relatively selective irreversible D2 dopamine receptor antagonist. Persistent blockade of NMDA receptors was achieved by continuously infusing dizocilpine (MK-801), a non-competitive NMDA receptor antagonist. The levels of GAD mRNA in mouse brain were measured by in situ hybridization histochemistry following treatment with these agents. Repeated administration of EEDQ increased the levels of GAD mRNA in corpus striatum and frontal and parietal cortex; the first significant effects were seen after 4 days of treatment. Treatment with FNM elicited effects similar to those produced by EEDQ, except FNM also significantly increased GAD mRNA in nucleus accumbens. Neither EEDQ nor FNM produced significant effects on GAD mRNA in olfactory tubercle or septum. Infusion of MK-801 produced a rapid and marked decrease in the levels of GAD mRNA in corpus striatum, nucleus accumbens, olfactory tubercle, septum and frontal and parietal cortex; significant changes were seen as early as 2 days of treatment. No significant effects were seen in globus pallidus. Cellular analysis of emulsion autoradiograms from corpus striatum revealed that MK-801 reduced the amount of GAD mRNA in individual cells as well as the proportion of cells expressing high levels of GAD mRNA. These results suggest that dopamine, though its interaction with D2 dopamine receptors, exerts an inhibitory effect on the expression of GAD mRNA, and that glutamate, though its interaction with NMDA receptors, exerts a stimulatory effect on GAD mRNA expression. They show further that the regulation of gene expression by dopamine receptors or NMDA receptors is different in different regions of the brain.  相似文献   

7.
There exist at least two distinct subtypes of angiotensin II receptors in the brain, namely the AT1 and AT2 subtypes. The high density of angiotensin II AT1 receptors is present in the medulla oblongata. The AT1 subtype of angiotensin II receptors mainly mediates central cardiovascular events. In the present study a polyclonal antibody against the angiotensin II AT1 receptor and a monoclonal antibody against tyrosine hydroxylase were employed to evaluate the possible presence of angiotensin II AT1 receptor-like immunoreactivity in the catecholaminergic neurons of the rat medulla oblongata by means of the double colour immunofluorescence technique. A weak, diffuse cytoplasmic angiotensin II AT1 receptor-like immunoreactivity was observed in almost all the catecholaminergic cell bodies of the A2, C1, C2 and C3 cell groups, except those of the A1 cell group containing moderately intense, diffuse cytoplasmic angiotensin II AT1 receptor-like immunoreactivity, occasionally found in the noradrenergic dendrites of the A1 cell group. There was a higher density of the angiotensin II AT1 receptor-like immunoreactive profiles in the A2 cell group area than in other catecholaminergic cell group areas. In addition, the angiotensin II AT1 receptor-like immunoreactivity was seen in non-catecholaminergic neurons. The present results provide evidence for the existence of the specific angiotensin II AT1 receptor-like immunoreactivity in the noradrenergic and adrenergic neurons of the rat medulla oblongata known to have a cardiovascular role. Thus, the findings support the view that angiotensin II AT1 receptors in the medulla oblongata participate in cardiovascular control and indicate a cellular substrate for the documented interaction between the angiotensin II and adrenergic transmission lines in cardiovascular function at the level of the nucleus tractus solitarii.  相似文献   

8.
The selective functions of D3 receptors in the brain are still poorly understood, mainly because all the ligands active at dopamine D3 receptors have also a high affinity for the D2 receptors. However, it is possible to study selectively D3 receptor function because some brain structures, such as the islands of Calleja, contain D3 and not D2 receptors. The position of the island of Calleja Magna in the rat brain makes it possible to inject dopamine D3 ligands into the vicinity of these D3 receptors, and to study their behavioral role, with no concomitant action on D2 receptors. We studied the effects on body temperature and on locomotion of unilateral microinjections of D2/D3 receptors ligands into the island of Calleja Magna and into the adjacent nucleus accumbens. The results show that D3 agonists injected into the island of Calleja Magna decrease body temperature and that this effect is potentiated by simultaneous injection of the D1 agonist SKF 38393. D3 agonists have no effect on locomotor activity in the island of Calleja Magna. In the nucleus accumbens, the D3 agonists have only weak effects on body temperature, but, when associated with a D1 agonist, strongly stimulate locomotor activity. The effects on body temperature of unilateral microinjections of dopamine agonists into unilaterally dopamine-depleted animals are the same as those in nondepleted ones. This indicates that the D3 receptors are localized postsynaptically in the island of Calleja Magna.  相似文献   

9.
The effects of chronic cocaine exposure on dopamine D1 and D2 receptor gene expression in the human brain were studied in postmortem samples from chronic cocaine abusing and matched control subjects. Using in situ hybridization of receptor autoradiography to examine messenger ribonucleic acid (RNA) and binding sites, respectively, neither D1 nor D2 receptor expression was found to be changed in the nucleus accumbens, caudate, putamen, or substantia nigra of the cocaine-exposed subjects. Although chronic cocaine exposure can produce alterations in dopaminergic neurotransmission, sustained compensatory changes in dopamine receptor expression do not appear to occur in the human.  相似文献   

10.
The nucleus accumbens is prominently implicated in the reinforcing effects of abused drugs, and is an important site for mediating aversive stimulus properties of opiate withdrawal. It is generally thought, however, that the role of the accumbens is negligible in the somatic signs of opiate withdrawal. Contrary to this assumption, we now report that D2 dopaminergic receptor activity in the accumbens area potently regulates somatic symptoms of opiate withdrawal. We find that activation of D2 receptors within the accumbens prevents somatic signs of naloxone-induced opiate withdrawal and, conversely, that blockade of accumbal D2 receptors in opiate-dependent animals elicits somatic withdrawal symptoms. These data indicate that dopamine in the accumbens not only is important in the rewarding effects of abused drugs, but also (via D2 receptors) plays a pivotal role in opiate withdrawal.  相似文献   

11.
The mechanism underlying dopamine D1 receptor-mediated attenuation of glutamatergic synaptic input to nucleus accumbens (NAcc) neurons was investigated in slices of rat forebrain, using whole-cell patch-clamp recording. The depression by dopamine of EPSCs evoked by single-shock cortical stimulation was stimulus-dependent. Synaptic activation of NMDA-type glutamate receptors was critical for this effect, because dopamine-induced EPSC depressions were blocked by the competitive NMDA receptor antagonist D/L-2-amino-5-phosphonopentanoate (AP5). Application of NMDA also depressed the EPSC, and both this effect and the dopamine depressions were blocked by the A1 receptor antagonist 8-cyclopentyl-1,3-dipropylxanthine (DPCPX), implicating adenosine release in the EPSC depression. A1 receptor agonists also depressed EPSCs by a presynaptic action, causing increased paired-pulse facilitation, but this was insensitive to AP5. Activation of D1 receptors enhanced both postsynaptic inward currents evoked by NMDA application and the isolated NMDA receptor-mediated component of synaptic transmission. The biochemical processes underlying the dopamine-induced EPSC depression did not involve either protein kinase A or the production of cAMP and its metabolites, because this effect was resistant to the protein kinase inhibitors H89 and H7 and the cAMP-specific phosphodiesterase inhibitor rolipram. We conclude that activation of postsynaptic D1 receptors enhances the synaptic activation of NMDA receptors in nucleus accumbens neurons, thereby promoting a transsynaptic feedback inhibition of glutamatergic synaptic transmission via release of adenosine. Unusually for D1 receptors, this phenomenon occurs independently of adenylyl cyclase stimulation. This process may contribute to the locomotor stimulant action of dopaminergic agents in the NAcc.  相似文献   

12.
Recent knowledge of the mechanisms underlying turning or circling behaviour in intact rats is reviewed. Most interest has been directed towards the striatum because of the classical hypothesis that turning behaviour results from lateral differences in the activity of the bilateral nigrostriatal pathway. However, the assumption that asymmetrical activation of the striatum is a necessary condition for dopamine-dependent turning behaviour has been questioned by several studies showing that unilateral injection of amphetamine or dopamine receptor agonists into the nucleus accumbens, a target of the mesolimbic dopaminergic system, also produces reliable circling away from the side of injection. Apart from discussing differences in stepping patterns of turning and discussing the role of the dopamine D1/D2 receptor interaction, the present survey focuses attention upon the two-component hypothesis, especially in relation to our recent studies in which activities of dopamine D1 and D2 receptors in the striatum and the nucleus accumbens have been manipulated separately in intact rats. It is hypothesized that turning behaviour is produced by asymmetry within nucleus accumbens circuits which involve neuronal connections from the nucleus accumbens to the A9 cell area, which in turn projects to the ventrolateral striatum that determines the direction of turning.  相似文献   

13.
The dopamine D3 receptor is expressed primarily in regions of the brain that are thought to influence motivation and motor functions. To specify in vivo D3 receptor function, we generated mutant mice lacking this receptor. Our analysis indicates that in a novel environment, D3 mutant mice are transiently more active than wild-type mice, an effect not associated with anxiety state. Moreover, D3 mutant mice exhibit enhanced behavioral sensitivity to combined injections of D1 and D2 class receptor agonists, cocaine and amphetamine. However, the combined electrophysiological effects of the same D1 and D2 agonists on single neurons within the nucleus accumbens were not altered by the D3 receptor mutation. We conclude that one function of the D3 receptor is to modulate behaviors by inhibiting the cooperative effects of postsynaptic D1 and other D2 class receptors at systems level.  相似文献   

14.
High-affinity angiotensin II receptors have been identified in cardiac tissue of many animal species. In the heart, angiotensin II exerts positive inotropic and chronotropic effects, constricts coronary vessels, and stimulates cell growth. In vascular smooth muscle and adrenal cortex angiotensin II interacts with guanidine nucleotide regulatory proteins because GTP-gamma-S causes dissociation of the radioligand from its receptor. To investigate whether angiotensin II interacts with guanidine nucleotide regulatory proteins also in cardiac tissue, we studied the effects of GTP-gamma-S on [Sar1, Ile8]-angiotensin II binding to angiotensin II receptor subtypes (AT1 and AT2) in hearts obtained from 16- to 20-week-old Sprague-Dawley rats. We employed an in situ technique performed on frozen tissue sections. Competition experiments performed with the nonpeptide inhibitors losartan and PD123177 allowed identification of both AT1 and AT2 angiotensin II receptors in rat heart. These receptors were present in comparable amounts. In a different set of experiments the effects of GTP-gamma-S (100 microM) on radioligand displacement from AT1 and AT2 receptors were studied. GTP-gamma-S caused a progressive dissociation of the radioligand from the AT1 receptor indicating that this receptor interacts with guanidine nucleotide regulatory proteins. In contrast, the AT2 receptor does not appear to directly interact with guanidine nucleotide regulatory proteins. In summary, the study shows that both angiotensin II receptor subtypes are present in rat heart and that guanidine nucleotide regulatory proteins are implicated in the signal transduction mechanism of the cardiac AT1 receptor.  相似文献   

15.
The role of dopamine in the subthalamic nucleus to control motor behaviour was investigated in rats using bilateral microinfusions of the dopamine D1 receptor antagonist SCH23390 and the dopamine D2 receptor antagonist S(-)-sulpiride. Selective blockade of subthalamic D1 receptors, but not of D2 receptors, produced catalepsy. These findings suggest that dopamine D1 receptors within the subthalamic nucleus play a prominent role in the regulation of motor functions. Furthermore, the data point to the possibility that a reduced dopaminergic tone at subthalamic dopamine D1 receptors might contribute to akinesia in Parkinson's disease.  相似文献   

16.
The receptor binding and biochemical effects of the putative dopamine (DA) partial agonist CI-1007 ([R(+)-1,2,3,6-tetrahydro-4-phenyl- 1-[(3-phenyl-3-cyclohexen-1-yl)methyl]pyridine] maleate) and potential antipsychotic were evaluated with a variety of biochemical methods. In receptor binding studies, CI-1007 bound to rat striatal DA receptors exhibiting a Ki of 3 nM as assessed by inhibition of [3H]N-propylnorapomorphine binding. CI-1007 also exhibited high affinity for cloned human D2L (Ki = 25.5 nM) and D3 (Ki = 16.6 nM) receptors with less affinity for D4.2 receptors (Ki = 90.9 nM). The affinity for serotonin-1A (5-HT-1A), alpha-2 adrenergic and 5-HT-2 receptors was moderate (submicromolar range) and slight or negligible for alpha-1, DA D1 and various other receptors. Unlike dopamine, the inhibition of [3H]spiperone binding was monophasic for CI-1007 and only slightly affected by the addition of Gpp-(NH)p. In vitro CI-1007 antagonized the forskolin-induced increases in cyclic AMP levels in GH4C1 cells expressing the human D2L receptor, having an intrinsic activity of 53% of that seen with the full agonist quinpirole. In vivo CI-1007 antagonized the gamma-butyrolactone (GBL)-induced accumulation of L-3,4-dihydroxyphenylalanine in striatum and mesolimbic regions of rat brain, causing a maximal 64% reversal in striatum, consistent with a partial agonist profile. In microdialysis studies it decreased DA overflow in both striatum and nucleus accumbens, indicating decreased release of DA. CI-1007 also reduced brain DA synthesis (DOPA accumulation), metabolism (DOPAC and HVA) and utilization (after tyrosine hydroxylase inhibition with alpha-methyl-p-tyrosine). CI-1007 did not affect striatal acetylcholine levels indicating lack of potent postsynaptic DA actions. CI-1007 seemed to be selective for DA neurons as it did not alter rat brain norepinephrine (NE) synthesis in the NE-enriched brainstem or NE utilization in the mesolimbic region. In addition, it did not affect in general 5-HT synthesis and metabolism in striatum and mesolimbic regions. These neurochemical results demonstrate that CI-1007 is a selective potent brain dopamine partial agonist with limited agonist activity at postsynaptic DA receptors.  相似文献   

17.
18.
Rats exhibited a marked suppression of motility when they were re-placed in the same environment as that in which they had previously received an electric footshock. We examined the behavioral and neurochemical effects of (+)-N-allylnormetazocine hydrochloride ((+)-SKF-10,047) and (+)-pentazocine, putative sigma 1 receptor ligands, on this psychological-stress-induced motor suppression, defined as a conditioned fear stress. (+)-SKF-10,047 (3 and 6 mg/kg) dose-dependently attenuated the conditioned fear stress, whereas (+)-pentazocine failed to do so even at a higher dose (32 mg/kg). In rats showing the conditioned fear stress, dopamine turnover (i.e., the ratio of dopamine metabolites/dopamine contents) was decreased in the nucleus accumbens and was increased in the medial prefrontal cortex, but remained unchanged in the striatum. (+)-SKF-10,047 (3 and 6 mg/kg) dose-dependently reversed the decreased dopamine turnover in the nucleus accumbens without changing the increased dopamine turnover in the medial prefrontal cortex. (+)-Pentazocine (32 mg/kg) did not affect the stress-induced changes in dopamine turnover in these brain regions. Thus, the decreased dopamine turnover in the nucleus accumbens appears to be involved in the conditioned fear stress. These results suggest that (+)-SKF-10,047 ameliorates the conditioned fear stress by reversing the psychological stress-induced dysfunction in the mesolimbic dopaminergic systems, and that the (+)-SKF-10,047-sensitive sub-population of sigma 1 receptors may play in important role in this stress response.  相似文献   

19.
The effects of dopaminergic receptor antagonists on dizocilpine-induced increase in extracellular acetylcholine (ACh) levels in the rat parietal cortex were examined in freely-moving rats, using an in vivo brain microdialysis method. Dizocilpine (0.5 mg/kg) significantly increased extracellular ACh levels in the rat parietal cortex and hippocampus, but not in the striatum. Pretreatment with alpha-methyl-p-tyrosine methyl ester (alpha MpT) delayed the onset but prolonged the duration of the dizocilpine-induced increases in extracellular ACh levels. The dopamine D2 receptor antagonist, haloperidol, showed dual effects similarly to alpha MpT, while the dopamine D1 receptor antagonist, SCH23390, prolonged, but did not delay, the onset of the dizocilpine-induced increases in ACh levels. These results suggest that the dopaminergic system is involved in the dizocilpine-induced increase in the extracellular ACh level in the parietal cortex in two ways, through both dopamine D1 and D2 receptors.  相似文献   

20.
Nucleus accumbens dopamine is often hypothesized as the critical factor for modulating cocaine self-administration. In the current study we examined the extent to which dopamine in the amygdala could contribute to cocaine intake behaviour and modify nucleus accumbens dopamine levels. Rats were trained to self-administer intravenous cocaine (1.5 mg/kg/injection) under a fixed-ratio reinforcement schedule in daily 3 h operant training sessions. In the first in vivo microdialysis experiment, extracellular dopamine levels were found to be increased 200% of baseline in the amygdala and by 400% in the nucleus accumbens. Although cocaine induced similar profiles of dopamine overflow in the two mesolimbic areas, in the nucleus accumbens the latency of the dopaminergic response was shorter (three- to four-fold) during both initiation and termination of the cocaine self-administration session than in the amygdala. Despite achieving a stable self-regulated pattern of cocaine intake and high dopamine concentrations in the nucleus accumbens, a unilateral injection of the D1 receptor antagonist SCH 23390 (0.5 or 1.5 microg) into the amygdala was still able to increase the rate of cocaine intake. This behavioural effect was accompanied by a dose-dependent increase in nucleus accumbens dopamine levels; at the highest SCH 23390 concentration cocaine intake was increased by 400% and dopamine levels were potentiated by an additional 400%. In vivo autoradiography using [3H]SCH 23390 showed that D1 receptor sites contributing to the behavioural and subsequent neurochemical effects were predominantly localized to the amygdala and not the nucleus accumbens. Altogether these results point to a significant contribution of in vivo amygdala D1 dopamine transmission to cocaine self-administration behaviour.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号