首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 281 毫秒
1.
通过对Al2O3/(W,Ti)C陶瓷刀片车削NbC铁基粉末冶金复合材料的试验研究,探讨了刀具的主要磨损形式,分析了复合材料中增强相含量和材料密度以及切削参数等因素对刀具磨损的影响。结果表明:陶瓷刀具不会发生严重的磨粒磨损,刀具的高脆性及硬质颗粒的剧烈刮擦、冲撞引起的切削刃微崩和剥落磨损是刀具磨损的主要原因;工件材料增强相含量越高,对刀具的磨损越大;在相对密度大于90.3%的范围内,材料密度对刀具磨损的影响不太显著,当密度进一步降低时,刀具磨损率迅速下降;切削速度越高、背吃刀量越大、进给量越小,刀具磨损越快;此外,切削速度对刀具磨损的影响最显著,而进给量对刀具磨损的影响最小。  相似文献   

2.
利用热压烧结法制备了钢纤维和硅酸铝纤维混杂增强陶瓷基复合材料,探讨了硅酸铝纤维含量对该复合材料摩擦磨损性能的影响,借助扫描电子显微镜(SEM)观察了复合材料的磨损表面形貌,并分析了其磨损机理。结果表明:随硅酸铝纤维含量的增加,复合材料的摩擦因数增大;高温下复合材料的耐磨性能随硅酸铝纤维含量的增大而降低;未添加硅酸铝纤维复合材料的磨损形式主要表现为脆性脱落和疲劳磨损,并伴有磨粒磨损;添加了硅酸铝纤维的陶瓷基摩擦材料的磨损形式均以粘着磨损为主。  相似文献   

3.
通过采用4种不同种类的刀具车削非连续增强的铝基复合材料(SiCw/2024、SiCp/2024),借助扫描电子显微镜(SEM)检测刀具磨损后的磨损形貌,用工具显微镜测量刀具后刀面的最大磨损值,分析不同切削工况下的刀具磨损。实验结果表明,磨损主要发生在刀具的后刀面,磨损机理为磨料磨损。前刀面上同时存在着磨料磨损和粘结磨损,但都不严重,没有形成月牙洼。刀具的磨损程度与刀具材料、切削用量、复合材料的增强相体积分数及尺寸等因素直接相关。  相似文献   

4.
压渗法制备陶瓷网络复合材料摩擦行为研究   总被引:7,自引:0,他引:7  
提出了三维陶瓷网络(骨架)增强金属基复合材料的新构思,设计和制备了一种新型的三维陶瓷网络(骨架)增强铝合金复合材料,研究了其在干摩擦状态下的滑动摩擦磨损行为。结果表明,基体铝合金在重载时产生严重粘着磨损,磨损层发生软化和塑性流动,而复合材料中的陶瓷颗粒暴露于磨损表面并起承载作用,从而保护基体小发生严重磨损。与基体合金相比,复合材料摩擦因数平稳而较低,且耐磨性提高6倍左右。  相似文献   

5.
研究了SiC颗粒增强PTFE基复合材料(PTFE/SiCp)在干摩擦条件下的磨损特性。对磨损表面进行了观察分析,建立了复合材料磨损机制转变图,对在不同磨损条件下的磨损机制进行了概括。结果表明,SiC颗粒增强PTFE基复合材料发生轻微磨损的主要机制是显微切削,发生严重磨损的主要机制是粘着磨损。  相似文献   

6.
使用聚晶金刚石刀具,在切削速度为15-150m/min范围内对体分比为0-10%的颗粒增强及颗粒/晶须混合增强钛基复合材料进行车削和铣削试验。分别采用自然热电偶和半自然夹丝热电偶法对车削和铣削时的切削热电势进行了测量,并用比较法快速标定系统对热电势进行了标定。结果表明:PCD刀具切削钛基复合材料时,切削温度随切削速度的增加而显著增加,切削速度从15m/min增大到150m/min时,切削温度从260℃增加到590℃。研究发现,刀具磨损对切削温度存在显著影响,磨损刀具(VB=0.1mm)比新刀的切削温度普遍高60-90℃。切削体分比为5%钛基复合材料时的温度高于其基体材料(钛合金TC4)的切削温度,但随增强相含量的进一步增大,切削温度反而略有降低(降低5%)。由于PCD刀具在较高速度下切削钛基复合材料时切削温度接近或超过PCD刀具在空气中的使用温度,切削过程中刀具会发生明显的化学磨损,从而在前刀面形成显著的月牙洼磨损形态。  相似文献   

7.
采用盘销式摩擦磨损试验机,对SiCp含量为20vol%的铝基复合材料和Kevlar增强摩擦材料组成的摩擦副在于摩擦条件下的摩擦磨损机理进行了实验研究。结果表明:摩擦副在跑合过程中,铝基复合材料中的SiCp颗粒对较软的有机复合材料产生犁削和微观切削效应,磨损机理为铝基复合材料的硬质颗粒对较软的有机复合材料的磨粒磨损;在跑合后的磨损试验中,摩擦材料磨损表面呈现出粘着磨损和塑性变形特征,随着转动速度的增加,塑性流动加剧;摩擦副接触表面发生材料的相互转移,并在铝基复合材料表面形成转移膜,且在较高速度下转移膜更易形成;在高速条件下,摩擦材料表面可见从铝基复合材料的铝合金基体中脱离的SiCp颗粒和熔融迹象;摩擦材料的磨损机理主要为磨粒磨损、粘着磨损和塑性变形。  相似文献   

8.
实验研究了Al2O3基纳米复合陶瓷刀具ASs与LTN连续干切削奥氏体不锈钢1Cr18Ni9Ti时的切削性能。结果表明,在相对较高的切削速度下,两种刀具表现出较好的切削性能,其中ASs刀具的主要磨损机制是粘结磨损和微崩刃,而LTN刀具则主要是粘着剥落;在相对低速下切削时,两种刀具都发生粘结破损失效。  相似文献   

9.
针对体积分数为65%的碳化硅颗粒增强铝基复合材料Si Cp/6063Al,采用聚晶金刚石(PCD)刀具对其进行了高速铣削试验,利用体视显微镜和扫描电镜(SEM)观察、分析PCD刀具前、后刀面磨损形貌的形成机理。研究结果表明:增强相Si C颗粒的高频刻划和冲击是导致刀具发生磨粒磨损、晶粒脱落、崩刃和剥落的主要原因;PCD刀具自身存在孔隙、组织不均等制造缺陷,加速了刀具发生晶粒脱落的情况发生,并在铝合金基体材料粘结物的产生、脱落过程中发生粘结磨损。  相似文献   

10.
使用YS8硬质合金TiAlN涂层立铣刀分别对SiC颗粒和Al2O3颗粒增强铝基复合材料进行高速铣削试验,结合切削过程对刀具磨损形式、微观磨损形貌以及磨损机理进行了分析。结果表明:磨粒磨损、涂层脱落和微崩刃是涂层刀具的主要磨损形式;增强颗粒尺度越大,刀具微观磨损划痕和微崩刃凹坑越明显;涂层刀具铣削颗粒增强铝基复合材料不具备优势。  相似文献   

11.
High-speed machining has been receiving growing attention and wide applications in modern manufacture. Extensive research has been conducted in the past on tool flank wear and crater wear in high-speed machining (such as milling, turning, and drilling). However, little study was performed on the tool edge wear??the wear of a tool cutting edge before it is fully worn away??that can result in early tool failure and deteriorated machined surface quality. The present study aims to fill this important research gap by investigating the effect of tool edge wear on the cutting forces and vibrations in 3D high-speed finish turning of nickel-based superalloy Inconel 718. A carefully designed set of turning experiments were performed with tool inserts that have different tool edge radii ranging from 2 to 62???m. The experimental results reveal that the tool edge profile dynamically changes across each point on the tool cutting edge in 3D high-speed turning. Tool edge wear increases as the tool edge radius increases. As tool edge wear dynamically develops during the cutting process, all the three components of the cutting forces (i.e., the cutting force, the feed force, and the passive force) increase. The cutting vibrations that accompany with dynamic tool edge wear were analyzed using both the traditional fast Fourier transform (FFT) technique and the modern discrete wavelet transform technique. The results show that, compared to the FFT, the discrete wavelet transform is more effective and advantageous in revealing the variation of the cutting vibrations across a wide range of frequency bands. The discrete wavelet transform also reveals that the vibration amplitude increases as the tool edge wear increases. The average energy of wavelet coefficients calculated from the cutting vibration signals can be employed to evaluate tool edge wear in turning with tool inserts that have different tool edge radii.  相似文献   

12.
The machining performance of monolithic and composite silicon nitride and Al2O3-based cutting tools in continuous turning of Inconel 718 was examined. The character of tool wear has been found to vary, depending on the feed rate and cutting speeds. At a lower cutting speed, of 120 m/min, tool life is restricted by depth-of-cut notching, while at high cutting speeds (300 m/min), tools fail due to nose wear and fracture. The sensitivity of monolithic Si3N4 and Al2O3 to depth-of-cut notching was found to he significantly reduced with the addition of SiC whiskers, and to a lesser extent with TiC particulates. The ceramic composites also exhibited resistance to nose and flank wear that was higher than that of the monoliths. The internal stress distribution for the cutting tool has been calculated using the finite element method and is the basis for explaining fracture beneath the rake face. Cutting tool wear results are discussed in terms of chemical and mechanical properties of the ceramic tool material, abrasive wear, thermal shock resistance, and metal cutting conditions.  相似文献   

13.
P.A. Dearnley 《Wear》1985,101(1):33-68
The need for superior in-service strength has meant that an increasing number of engineering components are now being made from pearlitic cast irons containing spheroidal graphite, rather than the more traditional cast irons containing flake graphite. Such changes of workpiece material have resulted in a rapid decline in tool life in many machining operations, particularly turning and facing.An investigation into the factors involved during chip formation which result in the observed patterns of tool wear is described in the work presented here. A series of turning tests were made on pearlitic grey cast irons containing flake (GA iron) and spheroidal (SG iron) graphite morphologies with cemented carbide (coated and uncoated) and ceramic tool materials. Built-up edge persisted to higher cutting speeds when cutting SG iron than GA iron, its periodic detachment causing attrition or fracture of the cutting edge. Smooth wear processes, probably caused by dissolution-diffusion and small strain discrete plastic deformation, were predominant on the rake and flank faces of the coated and ceramic tools when cutting both cast irons at high speed. Smooth wear was less rapid when cutting GA iron than SG iron because tool temperatures were reduced and “protective” nonmetallic layers, deposited from the chip-workpiece, interrupted dissolution-diffusion. When cutting SG iron, rapid wear of the uncoated cemented carbides was caused by attrition, while the relatively slower smooth wear, when cutting GA iron, was caused by dissolution-diffusion.  相似文献   

14.
刘苏 《工具技术》1997,31(11):9-11,21
对TiB2颗粒增强Al2O3刀具在车削正火态、调质态45#钢和球墨铸铁齿轮坯时的刀具磨损性能、磨损机理进行了研究,并与硬质合金刀具的耐磨性能进行了对比。结果表明:Al2O3┐TiB2陶瓷刀具具有良好的耐磨性能。刀具磨损主要以脆性剥离为主,同时存在着犁耕和塑性流变过程,陶瓷刀具表面形成的粘结层结构疏松,与基体结合力较弱,较易脱落,不易形成粘结磨损。  相似文献   

15.
Silicon carbide particle-reinforced aluminum matrix (SiCp/Al) composites have attracted considerable interest as potential materials due to their excellent engineering properties. Many research works have been done associated with turning SiCp/Al in the past. However, it still lacks of experience on milling of SiCp/Al composites. This paper presents an exploratory study on precision milling of SiCp/Al composites with higher volume fraction (SiCp, 65 %) and larger particle size. The experiments were conducted on a Kern MMP 2522, high-precision micromilling machine center. A single flute monocrystalline diamond end mill was used to mill straight grooves with cutting parameters in a few micros. The machined surface quality including surface roughness and surface topography were studied. The cutting mechanisms of SiC particle and tool wear characters were also investigated. The results showed that mirror-like surface with surface roughness around 0.1 μm Ra can be achieved by precision milling with small parameters in the range of a few micros. Most of the SiC reinforcements were cut in partial ductile way with microfractures and cracks on the machined surface; tool wear included chipping and cleavage on monocrystalline diamond edge. A large flank wear on tool bottom face was observed and suspected to be caused by coaction of chemical transition and mechanical abrasion.  相似文献   

16.
采用对角正交回归试验法,求得Al2O3基陶瓷刀具切削300M超高强度钢的刀具寿命经验公式,并分析了切削用量对刀具寿命的影响.通过扫描电子显微镜的观察和能谱分析仪的分析,对Al2O3基陶瓷刀具的损坏形态和磨损机理进行了研究.研究表明:Al2O3基陶瓷刀具车削300M超高强度钢时,粘结磨损和磨粒磨损是主要的磨损机理;合理的切削参数为:切削速度200~300 m/min、切削深度0.1~0.15 mm、进给量0.05~0.1 mm/r.  相似文献   

17.
Due to technical and economical factors, hard turning is competing successfully with the grinding process in the industries. Many practical applications require components to be hardened in order to improve their wear behavior. Higher productivity and good surface quality are the requirements of the modern industries. However, tool wear is the major problem in hard turning. The tool wear models, used to assess the performance of hard turning process, play an important role in predicting the surface quality. So, in the present work, an attempt has been made to develop an analytical tool wear model for the mixed ceramic inserts during the hard turning of bearing steel incorporating abrasion, adhesion, and diffusion wear mechanisms. The new model developed can reliably be used to assess the wear of the mixed ceramic tools within the domain of the parameters. It has been observed that tool wear is increasing with the increase in cutting speed, feed, and effective rake angle. However, it has been found to be slightly decreasing with the increase in nose radius. The proposed model was validated by conducting experiments. It could be seen that the model was capable of predicting the flank wear using the cutting parameters and tool geometry.  相似文献   

18.
本文对Al2O3/TiC陶瓷刀具材料切削加工G4335V高强钢时的切削性能和耐磨性进行了试验研究。结果表明:在低速切削条件下,Al2O3/TiC陶瓷刀具和硬质合金刀具(YT15)的抗后面磨损能力相差不大,而在高速切削条件下,前者的抗后面磨损能力远高于后者。Al2O3/TiC陶瓷刀具前面的磨损形式主要为粘结磨损,后面的磨损形式主要为磨粒磨损。  相似文献   

19.
通过对钛合金TC4、TC11和Ti-5553的切削试验,对比分析Ti-5553加工过程中切削速度对切削力和刀具磨损的影响。试验结果表明:随着切削速度增大,切削钛合金TC4和TC11的切削力呈现不同程度的先增后减趋势,而钛合金Ti-5553的切削力呈缓慢增大的趋势;在相同切削速度下,Ti-5553的主切削力和吃刀抗力均高于TC4和TC11;通过超景深、扫描电镜和能谱分析仪对刀具磨损部位进行观察与分析发现,切削Ti-5553的刀具磨损量最大,随着切削速度的增大,刀具的后刀面磨损量增加,刀具主要磨损形式为粘结磨损,刀具后刀面出现沟槽磨损,刀具出现破损。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号