首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《ASME Journal of Turbomachinery》2010年4月号介绍了对高压涡轮叶片内部冷却通路进行设计和优化的CHT(共轭传热)方法。  相似文献   

2.
为了详细设计涡轮动叶冷却结构,采用内流三维流场计算对内部的流动细节进行设计,并将全三维气热耦合计算作为冷却结构最终方案的详细设计。计算结果表明,当调整第三腔隔板倾斜时,可以有效地控制第三腔流动,降低第三腔位置的高温;由于第二腔根部冷气流动雷诺数较低,导致第二腔温度较高。通过将肋形式由60°平行肋改为60V型肋能够将最大温度降低10K。三维云图以及流线图可以看出,高温区随着结构的改变而改变。  相似文献   

3.
陈朔  罗磊  王松涛 《节能技术》2014,32(6):506-511
为了进行涡轮动叶冷却结构设计,采用一套设计流程,完成了某型涡轮第一列动叶无气膜方案设计。结果表明:管网计算设计中,得出调整后冷却结构的第一腔流量为16.85 g/s,第二腔流量为40.78 g/s,前缘最大温度为1 169 K,低于材料许用温度,满足设计要求。三维导热中的最大温度相比管网计算得出的温度有所上升,通过分析,管网计算未能考虑极值温度,因此三维导热计算是有必要的。从给出的三个截面温度场可以看出,前缘位置存在一定高温区,但最大温度低于设计温度,温度场符合设计要求。  相似文献   

4.
燃气轮机透平叶顶区域存在复杂的流动和换热问题,承受很高的热负荷。为了降低透平动叶叶顶温度,在透平叶顶现有结构的基础上提出气膜冷却和气膜+内冷通道冷却两种叶顶冷却方案,并通过流热耦合计算分析冷却升级前后叶顶区域的换热和流动特性。研究发现:叶顶气膜冷却方案可有效降低叶顶温度,特别是叶顶前缘至中弦区域;而气膜+内冷通道冷却方案基于外部气膜冷却,结合内部冷却通道设计,可进一步降低叶顶尾缘的温度;与原型叶片相比,气膜+内部冷气通道的复合冷却设计可以使叶顶尾缘最高温度降低24 K。  相似文献   

5.
对某燃气涡轮高压动叶的冷却结构进行了参数化设计,应用分块的结构网格构造了涡轮内部复杂的冷却结构,进行网格分区时既保证高质量网格,又避免过多增加网格分区。对涡轮动叶栅流场进行了数值模拟,指出参数建模是气冷涡轮叶片设计方法进行工程化应用的前提条件。气膜冷却和带肋片的蛇形通道结构能够有效提高动叶片的冷却效果,保护叶片正常工作。  相似文献   

6.
对某型燃气轮机高压涡轮动叶进行气热耦合数值模拟,分析了该叶片的温度场情况。叶片表面最高温度为1 210 K左右,平均冷却效果为0.425。为了解决该叶片前缘温度较高且存在较大的温度梯度,以及顶部叶冠的冷却需要消耗大量冷却空气的问题,对该叶片进行了去掉顶部叶冠、增加前缘气膜的改型设计。通过对改型叶片进行数值模拟,并根据结果进行优化,最终得到一个满足设计要求的冷却结构。优化后的涡轮叶片前缘温度降到1 150 K以下,平均冷却效果达到0.45,满足设计要求。  相似文献   

7.
按照涡轮传热分层设计流程,对某型燃气轮机高压涡轮导叶进行了冷却结构设计。利用管网设计方法快速得到符合设计要求的基本冷却结构,采用UG建模与自编程序相结合快速生成实体模型,并选取两种典型冷却方案进行全三维气热耦合计算。计算结果表明:两种冷却方案总冷气量基本相同时,前腔冷气流量更大的方案2满足设计要求,其前腔无量纲流量为0.052 7,后腔无量纲流量为0.049 4,叶片表面无量纲平均温度为0.666 7,无量纲最大温度为0.737 1;增大吸力面“簸箕”形状气膜孔的冷气流量,可以有效降低吸力面中后部高温区域的温度;利用管网设计可以快速搜寻合理的冷却结构方案,该设计方法显著地缩短了设计周期。  相似文献   

8.
以某涡轮第二级动叶为研究对象,结合参数化特征建模技术研究设计冷却结构,并研究了温度分布,结果表明:叶片的改型对于流道内的温度分布影响很小,而叶片内部温度的分布有一定变化.在叶片后腔所在区域底部截面上,温度下降了10 K左右,在中部截面和顶部截面上冷却效果没有明显改善.  相似文献   

9.
为探究轴流涡轮耦合排气壳扩压段的一维设计变量选取规律,提高排气壳扩压段的性能,参考现有NRCC叶栅导叶模型,采用自编程序,结合理论分析构建轴流涡轮与排气扩压段耦合的一维设计模型。详细分析耦合设计中影响扩压段的静压恢复系数以及总体性能的因素。研究结果表明:扩压段面积比、平均倾角、扩张角以及壁面摩擦系数等设计参数不仅影响扩压段的静压恢复系数,也影响涡轮的气动效率;本研究模型在面积比为3.5、平均倾角为30°、扩张角δ为5°时整体性能最优;涡轮出口气流的马赫数、叶顶泄漏流以及出口旋流对扩压段的性能有很大影响,出口半径比的增大会使得静压恢复系数降低,因此在耦合设计时应充分考虑涡轮以上参数的选择。  相似文献   

10.
涡轮叶顶间隙影响涡轮气动特性。文中针对某型船用燃气轮机在慢车、0.35、0.50、0.85、1.00、1.05等多个工况,通过有限元计算,研究并分析了不同工况时涡轮叶顶间隙高度对涡轮效率的影响。结果发现当运行工况高于0.85工况时该燃气轮机涡轮叶片与机匣衬环发生碰磨;当工况不变时,控制高压涡轮叶顶间隙高度,发现叶顶间隙每增大0.2 mm,涡轮效率降低约0.4%左右,研究结果对主动间隙控制相关研究提供理论参考。  相似文献   

11.
气冷涡轮级气热耦合非定常数值模拟   总被引:2,自引:1,他引:2       下载免费PDF全文
采用三维非定常气热耦合模拟的数值方法,对具有冷却结构的单级涡轮进行非定常流动和冷却性能进行研究,通过对非定常流场和固体温度场的分析来探讨冷气对叶片排内流场和固体温度场的影响,指出在非定常状态下,不同的动、静叶相对位置对应不同的气膜出流情况。上游周期性不稳定尾流会造成下游动叶片主流掺入气膜保护层,会造成气膜冷却效率降低。尾迹对叶片前缘的撞击引起瞬间的冲角增大,叶片气动负荷以及温度分布存在一定程度的波动,吸力面前缘受到的干扰更为明显。  相似文献   

12.
基于开发的涡轮导叶复合冷却结构设计平台实现了对涡轮导叶强度的计算分析。设计平台包括参数化建模-网格剖分-叶片强度计算3个主要模块。在参数化建模模块中对复合冷却导叶中存在的结构形式(壁厚、隔板、劈缝、扰流柱、气膜孔、冲击孔以及缘板等结构)分别实现了精确的参数化描述,并最终生成冷却结构的固体域和流体域模型;在叶片强度计算模块中,基于网格剖分结果以及ANSYS-APDL的二次开发实现复合冷却结构导叶的强度分析。  相似文献   

13.
燃气轮机带冠涡轮动叶故障分析及改进   总被引:2,自引:0,他引:2  
采用静力学、动力学计算方法对某型工业燃气轮机低压涡轮带冠动叶掉角故障进行了分析,得出了叶冠产生掉角的主要原因是:原设计叶冠的预扭角过大、叶冠凹口处的转接R小及装配工艺不良所致.计算分析的结果对叶片的结构及装配工艺进行了设计改进,将叶冠预扭角由1°调整为0.5°,叶冠凹口转接R由R0.8 mm增大到R2 mm,叶盆侧叶片前缘与叶冠的过渡R由R3 mm增大到R4.5 mm.其后的实际运行,证实了改进措施的有效性.  相似文献   

14.
高压涡轮叶片状态的好坏直接影响着燃气轮机运行的安全可靠性,机组在电厂运行时,必须严格按照运维手册对高压涡轮叶片状态进行监测。本文针对QD128燃气轮机燃气发生器高压涡轮工作叶片掉块情况,整机分解后流道检查,对叶片掉块部位宏观、微观形貌分析,选取掉块部位附着有可疑物的叶片进行能谱分析,最终找到了叶片掉块的原因,并制定了相应的补救措施,为今后燃气轮机的安全可靠运行提供了保障。  相似文献   

15.
采用气热耦合的数值计算方法以及考虑转捩的湍流模型,对采用热障涂层技术的某型气冷涡轮叶片前缘传热进行了数值研究.结果表明,由于热障涂层的高绝热性,热障涂层一方面大幅提高叶片的抗氧化和抗热腐蚀的能力,另一方面配合高效的冷却技术,可以降低金属叶片的工作温度和叶片内的温度梯度.  相似文献   

16.
为了快速设计一套涡轮静叶的冷却结构,采用单元设计法、管网计算、三维导热计算方法对某型涡轮第一级静叶进行内部冷却结构设计。设计结果表明:管网计算设计得到第一级静叶冷却结构的实际冷气量为7.28 g/s,略小于设计最大值7.8 g/s。最大无量纲壁温为0.98,小于设计允许的最大无量纲壁温1;三维温度场计算表明,叶片表面平均无量纲温度0.876,冷却效率为0.530。  相似文献   

17.
将边界元计算方法应用到三维N-S方程求解程序中,流体部分采用有限差分法求解N-S方程,边界元法求解固体区域热传导方程。开发气热耦合计算程序对NASA-MarkII高压气冷涡轮叶栅热环境进行气热耦合分析。利用边界元法特有的优势(降维、解析与离散相结合的特点),避免了固体区域的网格生成和内部节点求解工作,提高了计算精度。结果表明,耦合计算程序能够高效、准确求解多场的气热耦合问题,计算结果与实验结果吻合的较好,二者平均误差为3%。  相似文献   

18.
本文提出一种前缘前伸内凹且根部叶片略厚的新型动叶片设计方法,旨在通过这种新型叶片控制前缘马蹄涡的生成和发展,通过根部叶片较厚到中间区域叶片厚度略低的三维设计和积叠方法,实现动叶片的弯叶片效果。论文以某高压涡轮叶片为研究对象,从能量损失系数、型面压力分布、旋涡沿流向变化对比分析了新型叶片与原型叶片对流场结构的影响。研究表明叶型前缘新的几何特征使马蹄涡得到控制,流场内流动得到改善。  相似文献   

19.
以某涡轮第二级导叶为研究对象,结合参数化特征建模技术研究设计冷却结构,并进行气热耦合分析,研究结果表明:低压导叶外部各截面上的温度分布均匀,尤其是在冲击冷却的部位,温度明显低于尾缘区域,而且冲击冷却在压力面上的冷却效果要好于吸力面,冷却效果理想.低压导叶内部温度梯度较大,整个叶片内壁面由冲击射流和横向流动作用使得冷却充分均匀.  相似文献   

20.
本文利用流固耦合数值模拟分析的方法,对某型船用燃气轮机涡轮可变几何导叶进行了气动与传热分析。在同一工况下,当导叶调整旋转角度分别为-3°、0°、+8°时,涡轮导叶叶片表面以及叶顶端区传热特性会发生改变。经计算发现:对整体导向叶片而言,叶片旋转轴所在的圆盘部位平均温度较低,圆盘所在区域的热应力分布相对较高;导叶旋转角度的变化不会从根本上改变流场及叶片表面的压力分布,但会改变泄漏涡发生的初始位置以及涡核的拓展区,从而降低了泄漏涡对压力损失造成的影响,由于固体叶片具有良好的导热特性,改变导叶角度不会大范围地改变叶片表面的温度分布及热应力分布。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号