首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
金属钙对煤焦异相还原NO催化机理的量子化学研究   总被引:2,自引:1,他引:1  
从动力学和热力学角度,采用量子化学方法对金属钙催化煤焦异相还原NO的机理进行详细研究.采用QCISD(T)/6-311G(d,p)//UB3LYP/6-31G(d)方法,对煤焦及金属钙还原NO的各个基元反应进行动力学或热力学研究.结果表明,煤焦和金属钙还原NO的活化能分别为245.35 kJ/mol和109.82 kJ/mol,说明金属钙还原NO的活化能大大低于煤焦,金属钙对NO的还原能力显著高于煤焦.而另一方面,采用UB3LYP/6-31G(d)方法对CaO与煤焦的反应进行热力学分析.结果表明,该反应在高温下的相关吉布斯自由能差△G约为-1 000 kJ/mol,说明CaO在高温下很容易被煤焦迅速还原成Ca,从而使金属钙循环再生.  相似文献   

2.
氧燃烧技术是一种能综合控制燃煤污染排放的新型燃烧技术,循环烟气中NOx被碳氢化合物的均相、煤焦(碳)异相还原,使得NOx排放大为降低.高浓度CO2气氛是氧燃烧技术的最大特点之一,为了研究高浓度CO2气氛下煤焦(碳)异相还原NO相关反应,采用了密度泛函计算方法B3LYP/6-31G(d),计算煤焦(碳)异相还原NO反应以及CO和O2影响NO还原过程的相关反应,优化得到反应路径上稳定点的几何构型;采用QCISD(T)/6-311G(d,p)方法计算得到了反应过程中各稳定点的能量,并计算得到活化能;使用经典过渡态理论计算反应速率常数,得出每个反应的阿累尼乌斯表达式,研究了详细反应路径和机理.初步探讨了氧燃烧方式下煤焦异相还原NO机理,获得了重要相关反应的反应路径和动力学参数;并且为进一步研究煤焦与多种气体联合作用机理提供了理论基础.  相似文献   

3.
针对Fe3O4化学链制氢和CO2分离过程,研究了Fe3O4在CO气氛下还原以及铁在水蒸气下氧化的动力学特性.用Coats-Redfen单升温速率积分法、Ozawa组合升温速率法和lnln恒温分析法对反应机理进行了探讨,并计算了动力学参数.热重数据计算结果表明:在CO和N2体积分数分别为5%和95%时,还原反应属于一级反应,750~900,℃时反应活化能为112,kJ/mol;在CO、CO2和N2体积分数分别为42.9%、14.3%和42.8%时,还原反应可用Jander扩散模型描述,750,~950,℃时反应活化能为49.828,kJ/mol;经Ozawa法验证,加入CO2后的还原反应活化能明显降低.铁与水蒸气的氧化反应接近二维核生长模型,反应活化能较低,为29.633,kJ/mol,且随着温度升高,反应速率常数增大.  相似文献   

4.
在建立的化学反应动力学控制实验条件下利用自建固定床实验台研究了烟煤煤焦等温CO2气化反应特性。采用均相模型、未反应收缩核模型和修正体积模型计算得到气化反应活化能分别为147.7kJ/mol、102.9kJ/mol和155.5kJ/mol。利用等转化率法避开反应机理函数的选择,计算得到反应活化能为144.1~166.0kJ/mol。通过比对不同模型相关系数大小以及与等转化率法计算所得活化能范围符合程度相结合的方法,确定均相模型和修正体积模型为最佳动力学模型;根据修正体积模型中经验常数b≈1,可认为修正体积模型与均相模型为同一模型。因此确定烟煤煤焦CO2气化反应最佳动力学模型为均相反应模型。  相似文献   

5.
在微型流化床反应器上,对几种典型煤焦在O2/CO2燃烧方式下不同燃烧气氛、氧气体积分数、初始循环NOx体积分数对NOx生成的影响以及煤焦/NO的异相还原进行了实验研究.实验结果表明,同一种气氛下CO2焦的N转化率大于N2气氛焦转化率;氧气体积分数提高对煤焦还原NOx既有促进也有抑制作用;初始NOx体积分数的提高对NOx还原量、还原速率均有提高.  相似文献   

6.
《动力工程学报》2015,(7):543-548
以李家塔烟煤和锦界烟煤煤焦为研究对象,利用固定床反应器系统,研究了高体积分数CO2气氛下煤焦异相还原NO的反应特性,分析了反应气氛、CO2体积分数、O2体积分数、NO初始体积分数和热解温度等对煤焦还原NO的影响.结果表明:反应气氛中高体积分数CO2的存在不利于煤焦还原NO,且CO2体积分数越大,越不利于NO还原;当反应温度较低时,反应气氛中O2对煤焦还原NO具有一定的促进作用,但当反应温度较高时则不利于NO还原;随着NO初始体积分数增大,NO还原率降低;随着热解温度的升高,煤焦还原NO的能力下降.  相似文献   

7.
采用热重分析仪与傅里叶红外光谱仪对城市污水污泥进行实验,考察了反应过程及逸出气体产物,求解了热解表观动力学参数。研究表明,污泥样品在N2、CO2和N2+O2气氛中分别发生的热解、气化和燃烧反应,反应过程的特征参数不同;在N2中主要热解温度范围为200~560℃,反应过程在600℃基本完成;随着升温速率增加,热解最大失重速率提高;污泥样品在N2中的热解过程依次析出H2O、CO2、CH4和CO等气体;污泥样品热解不同反应阶段具有不同反应机理和动力学参数,表观活化能在60~100 kJ/mol范围内。  相似文献   

8.
在碱金属催化作用下煤焦与CO2的气化反应   总被引:10,自引:0,他引:10  
利用固定床实验装置、以CO2作为气化剂,进行煤焦气化反应动力学的研究,分析了碱金属的含量及气化温度对煤焦-CO2气化反应的影响。采用未反应核收缩模型对试验数据进行处理,得到气化反应动力学参数。发现气化温度对煤焦与CO2的气化反应影响显著,碱金属作为煤焦-CO2气化反应的催化剂,能够降低反应过程的活化能,提高反应速率,用未反应核收缩模型能够很好地描述煤焦。CO2的气化反应过程。  相似文献   

9.
研究了不同煤种煤焦燃烧反应的活化能的变化,发现在环境温度800℃-1100℃、炭粒温度1200℃-1500℃范围内,对于煤焦成份(Can Aad)大于70%的煤种,总反应活化能E的数值随煤种煤焦含量(Can Aad)增加而增加,且有明显的变化规律,当Can ad为70%-96.4%时,E为144-180kJ/mol。定量研究了在此温度范围内煤焦燃烧的氧化与还原两种反应各占的份额,还原反应活化能占总反应活化能的19%-35%;还原反应占总反应的份额为365-78%;此两种份随Can Aad减少而增加。  相似文献   

10.
采用微细煤焦再燃还原NO的反应机理   总被引:1,自引:0,他引:1  
刘忠  阎维平  赵莉  宋蔷  姚强 《动力工程》2007,27(6):964-968
以3种细度的混煤煤焦作为再燃燃料,用N2、O2、CO2和NO配制模拟烟气,在1200℃、1300℃和1400℃立管式携带炉中进行了再燃还原NO的实验研究,对其化学反应机理进行了分析.结果表明:微细化煤焦再燃还原NO的反应速率受扩散-反应动力学的联合控制.因此,提高再燃区温度水平、使用反应活性高的煤焦或提高再燃煤焦的细度,均能明显提高再燃还原NO的化学反应速率.  相似文献   

11.
采用热重分析仪在CO_2/N_2气氛下对煤粉进行了非等温热解气化实验研究,分析了程序升温速率和CO2浓度对煤粉热解、气化特性的影响,并采用Coats-Redfern法、FWO法和KAS法对煤粉热解、气化过程进行了动力学分析。实验结果表明:在CO_2/N_2气氛下,随着程序升温速率的升高,热解和气化反应速率均增大,表观活化能均减小。在CO_2/N_2气氛下,CO2不会影响煤粉的热解过程,而对气化过程有决定性影响,CO2浓度越高,气化反应速率越大,表观活化能越大。在CO_2/N_2气氛中煤粉气化反应的表观活化能E和表观指前因子A之间具有动力学补偿效应。在相同气氛下,煤粉气化反应的表观活化能随转化率的增大而减小。  相似文献   

12.
针对碳烟在火焰中的氧化,本文利用DFT方法研究活性O氧化碳烟边缘茚型五碳环结构的反应机理.在B3LYP/6-311G(d,p)和M06-2X/cc-p VQZ的计算水平下,探究活性O与C13H9自由基的详细反应路径,并基于TST计算各基元反应在500~3 000 K温度范围内的速率常数.结果表明:活性O与C13H9自由基形成的C13H9O,进一步热解后将产生CHO、CO和具有四碳环结构的PAHs.CHO的生成高度依赖温度和反应位点,其反应需克服402.7 kJ/mol的限速步能垒.C13H9O热解的氧化产物主要为CO.M1和M2热解释放CO的主反应路径为路径3和12,并产生具有四碳环结构的CS9,对应的限速步能垒分别为167.9 kJ/mol和153.8 kJ/mol.C13H9O热解的起始反应主要为C—C键断键和H转移反应,其中C—C键断键的反应路径更易发生,且反应速率也更快.  相似文献   

13.
臭氧在烟气中氧化零价汞的量子化学研究   总被引:1,自引:0,他引:1  
利用量子化学方法计算研究了臭氧在烟气中氧化零价汞的微观反应机理,采用MP2/SDD计算方法优化得到反应物、过渡态、中间体及产物的几何构型,并通过振动分析与IRC分析确定反应过渡态和中间体,在QCISD(T)/SDD水平上计算能量,同时进行零点能校正,计算了反应活化能,并采用经典过渡态理论(TST)计算反应的速率常数,拟算出反应的阿累尼乌斯表达式.结果表明,臭氧在烟气中产生的NO3、O3和NO2粒子对零价汞进行氧化的活化能分别为22.94 kJ/mol,53.34kJ/mol和168.23kJ/mol.通过活化能比较,得到3种粒子的氧化性强弱为:NO3>O3>NO2在298 K下,将计算获得的反应速率常数与文献数据进行比较,结果吻合较好.  相似文献   

14.
用数值模拟的方法研究了柴油机稀燃NO_x捕集技术(LNT)浓燃再生过程中CO还原NO的反应过程.建立了铂(Pt)催化剂表面CO还原NO的详细化学反应机理模型,该机理包括5种气相组分、5种表面组分和11步基元反应,其中包含了CO_2、N_2和副产物N_2O的生成路径.对反应器出口各主要组分摩尔分数随温度的变化情况进行了模拟,其结果与文献中的试验数据吻合良好.CO和NO的反应开始于250,℃左右,N_2O为低温区间的主要产物;300,℃时,N_2开始生成,并逐渐取代N_2O成为主要产物.分析了生成N_2的两条反应路径,结果表明:当温度低于330,℃时,N原子重组路径占主导;而温度高于330,℃时,N_2O分解路径占主导.此外,预测了CO摩尔分数对CO和NO转化率的影响,证明了CO自抑制效应,即随着CO摩尔分数的增加NO转化率先升高后降低.  相似文献   

15.
以大同烟煤为研究对象,在高温携带流模拟反应器上,利用平流火焰燃烧器制取真实富氧燃烧气氛下的煤焦,对不同停留时间下制取的煤焦进行工业分析,讨论停留时间对煤焦的燃尽率、固定碳和挥发份的含量的影响,当停留时间超过94ms时,煤焦的各种参数保持不变.利用热重分析仪进行煤焦的燃烧实验,讨论不同O2/CO2(20/80、30/70和40/60)气氛对煤焦燃烧特性的影响,并采用Coats - Refern法计算煤焦的活化能和指前因子等动力学参数,460~660℃范围内,背景气氛O2/CO2为30/70时煤焦的活化能和指前因子数值最大,为进一步研究煤焦在富氧燃烧气氛中的燃烧反应提供理论依据.  相似文献   

16.
还原糖是生物质资源制备乙醇的中间体。为了证实亚临界水解废纸制备还原糖工艺的可行性,研究了在280~320℃,0.25~10 min内废纸亚临界水解为还原糖的水解动力学,构建了一级反应动力学模型,对废纸水解为还原糖的数据进行了动力学拟合。研究结果表明,废纸水解为还原糖的活化能为90.45 kJ/mol,而还原糖水解为其他物质的活化能为106.53 kJ/mol,前者的活化能低于后者,且前者的水解速率常数高于后者,有利于还原糖的积累,故此工艺可行;在310℃,2 min时,废纸水解为还原糖的得率高达46.32%。  相似文献   

17.
利用固定床反应器分析各种因素对煤粉再燃NO还原过程均相与异相反应相对贡献的影响.在1 000℃和1 100℃下,利用模拟烟气对不同煤种的挥发分、煤焦、煤粉的再燃反应进行分析.结果表明:长广煤均相还原反应的贡献大于异相反应,但对于兖州煤和合山煤,异相还原反应的贡献大于均相反应,神木煤两者贡献相当.分析认为:除煤粉挥发分含量、焦的比表面积之外,煤灰中金属氧化物的含量,尤其是CaO的含量,是决定NO异相还原反应贡献大小的主要因素;而反应温度的升高,使NO均相和异相还原效率均提高,但并未改变异相和均相反应贡献的大小.  相似文献   

18.
在N_2的气氛下,以10℃/min、20℃/min、30℃/min、40℃/min和50℃/min的升温速率分别对黑液木质素焦进行热重实验,研究升温速率对其热解反应的影响。结果表明,黑液木质素焦的热解过程主要分为三个阶段:180~380℃、380~570℃以及570~800℃;TG和DTG曲线随着升温速率增大逐渐向高温侧偏移,高升温速率不利于热解反应进行;采用Coats-Redfern法、Ozawa法和Kissinger法求得活化能分别为93~251 kJ/mol、111~122 kJ/mol和110~134 kJ/mol。  相似文献   

19.
分别以分析纯CaO和Fe(NO_3)_3·9H_2O为催化剂前驱物,在自建的固定床实验台上研究了常压下碱金属Ca、过渡金属Fe对锦界烟煤煤焦-CO_2等温气化的催化效果。实验结果表明:锦界煤焦的气化活性随Ca和Fe添加量的增大而提高,Ca和Fe的负载饱和度均为3%,在900℃气化温度下Ca金属的催化活性与Fe金属相当;Ca和Fe分别使气化温度降低120℃和90℃;在化学反应控制区域内,采用均相模型计算得到气化反应活化能、指前因子和反应速率常数等动力学参数,添加Ca和Fe金属后的煤焦气化速率常数提高近三倍,活化能基本没有变化。  相似文献   

20.
采用热重分析仪和质谱仪联用对使用机械混合法制备Fe2O3和Al2O3载体的还原反应过程进行研究。还原反应中使用3种10%还原气体(CH4,H2,CO),氧化反应中使用5%氧气以避免较大的温升。从载体的还原失重曲线中可明显地看出铁基载体的还原过程分为3个阶段,且反应速率各不相同。还原的3个阶段中第一阶段的反应速率最快,且燃料能够完全被氧化生成CO2,随着反应进行速率降低,燃料不完全转化程度增加。通过XRD(X射线衍射)分析各个还原阶段的产物,发现与以前认识的载氧体活性相与惰性相不同,Al2O3在反应过程中会参与反应,生成新的化合物FeAl2O4,而此化合物不稳定能够进一步分解,被还原成Fe。3种还原气体中,H2的还原反应速率最快,并且无积碳,而CH4的还原反应中存在较为严重的积碳现象。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号