首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
为分析旋流对湍流流动的影响,对并排双旋流模式以及无旋流模式下的流场进行了数值模拟。在冷态下,旋流间的相互作用主要影响回流区形态,旋流极大拓展了湍流大脉动区域,适中的旋流更利于维持双涡结构。在热态下,旋流对回流区总体强度的影响比冷态更强烈,双旋流使凹腔湍流脉动受到抑制。燃烧能显著改变凹腔回流区和旋流回流区形态,增强旋流回流区强度,缩小其尺度,但使凹腔回流区尺度和强度均明显减小。燃烧可改善双涡结构,使气流旋动比湍流脉动具有更强的轴向衰减特性。  相似文献   

2.
用激光多普勒测速仪对旋流器产生的强湍流有自由射流的速度场和湍流场进行了实验研究。实验结果表明,这种旋流器十分有利于中心回流区的形成,射流的平均速度分布沿轴向快速地衰减,有旋自由射流呈现湍流各向异性,特别是在回流区域中,本文对流场中湍流动量传递的方向进行了讨论。  相似文献   

3.
合成气低旋流燃烧器设计与流动结构的分析   总被引:1,自引:0,他引:1  
设计了一个合成气低旋流燃烧器,采用PIV技术对不同负荷下的冷态流场进行了测量,并比较分析了不同中心射流流速对旋流流场的影响.结果表明:流场中出现中心回流区时的旋流数与中心流速无关,高旋流与低旋流的分界点为S=0.7;流场中的轴向速度、径向速度和湍动能均关于燃烧器中心轴线对称;中心轴线上无量纲轴向速度的分布与中心射流流速(负荷)无关,燃烧器出口下游形成一个发散低速区,有利于稳定充分燃烧;随中心射流速度的增大,径向速度成正比增大,湍动能明显增加.  相似文献   

4.
为满足高温升高热负荷燃烧室头部设计要求,参照旋流器设计准则,设计4种不同三级旋流杯燃烧室,采用数值模拟和PIV试验相结合方法对其冷态流场进行初步研究。研究结果表明:第3级旋流器叶片安装角增加,火焰筒头部旋流特性更显著,回流区直径增大,有利于火焰稳定;同时主燃孔射流深度增加,有利于截断火焰。第3级旋流器叶片数增加,主流速度衰减加快,气动损失增大,使火焰筒头部进气量减少,同时削弱三级旋流杯出口气流旋转强度,火焰筒头部回流区直径减小,不利于燃烧。  相似文献   

5.
We describe the flow dynamics inside a novel swirler conceptualized for gas turbine combustors. The supreme advantage in this swirler is the ability to vary the swirl number for the same value of Reynolds number. The significance of such advantage against contemporary configurations, which have constant swirl number, is quite evident at low turbine operating loads. The novel geometry and flow pattern are described in details in the present work. The results of four numerical simulations are presented and discussed to study the central recirculation zone, turbulence intensity, and pressure drop at different swirl numbers. The new concept is deemed to enhance the combustion efficiency because of its ability to adjust the swirl number according to the turbine operating load. The current study reports preliminary results which verify the concept behind the proposed swirler. However, intensive numerical and experimental studies are necessary to be carried out in order to characterize the flow dynamics produced by the novel swirler and its impact on the combustion process.  相似文献   

6.
针对当前广泛应用于低排放燃气轮机燃烧室中的空气雾化喷嘴,采用大涡模拟(Large Eddy Simulation,LES)和流体体积法(Volume of Fluid,VOF)研究了其在流动模糊(Flow Blurring,FB)和流动聚焦(Flow Focusing,FF)模式下射流一次破碎过程的差异。结果表明:两种模式的射流一次破碎过程均可分为3个阶段,气液交界面波动阶段、射流发展阶段和射流破碎阶段;喷嘴内部回流区的演变决定了气液交界面的波动程度,流动模糊模式下射流在后两个阶段的径向速度和形态变化程度均远高于流动聚焦模式,气泡回流过程在其射流破碎阶段占据主导地位,液体管道内气泡分布位置与涡的强度呈正相关。  相似文献   

7.
柴油机涡流室内空气流动特性的LDA测试及数学模型   总被引:2,自引:0,他引:2  
王谦  许振忠 《内燃机学报》1998,16(3):299-308
本报导了采用激光多普勒测速仪(LDA)首次在实机上对柴油机涡流室内空气运动规律测试的研究结果。研究表明:涡流室内涡流在一定的半径范围内是刚体涡流,在涡流室周边区域可近似看作势涡流。  相似文献   

8.
This paper focuses on investigating the interaction effects for swirl and bluff-body in stabilized flame process. Particle image velocimetry was used to measure velocity fields in three burners. First, the comparison of flames in bluff-body stabilized burners with and without swirl is presented. The results of the experiments present the variations of bluff-body stabilized flame when swirl is added into burner: the maximum reverse flow velocity and the maximum mean average radial velocity decrease; the maximum radial rootmean squared fluctuating (rms) velocity increases; the values of the axial velocity peak on the side of nozzle axis are lower, and the distance between the peak and centerline is bigger; the location of the maximum radial rms velocity moves to the outlet of annular air-flow from central recirculation zone (CRZ). Then, the comparison of flames in swirl burners with and without bluff-body is provided. The results of the experiments show the changes of swirling flame when bluff-body is added into swirl burner: the air vortex in the CRZ moves to the burner; the peak values of axial mean and rms velocity decrease; the distance between centerline and the mean axial and rms velocity peak increase; the peak of mean radial velocity decreases, and the peak of rms raidial velocity increase. The data from this experiment can also be established as benchmarks for the development and validation of combustion numerical simulations.  相似文献   

9.
Combustion performance of a non-premixed combustor with a slotted swirler was experimentally and numerically investigated. The velocity and temperature profiles in the downstream of the swirler were measured in both cold-flow and combustion experiments. Concentration of CO2 emission was measured by utilizing a flue gas analyzer and the combustion efficiency was accordingly determined. The same experiments with a non-slotted swirler were repeated for comparison. The results show that, compared to the non-slotted swirler, the slotted swirler results in a larger recirculation zone, in which the flow velocity is smaller and the temperature is higher, implying the enhanced combustion performance. The combustion efficiency of the slotted swirler based on the measured CO2 emission is 75%, which is higher than 60% of the non-slotted swirler. These results suggest that the slotted swirler holds potential to enhance the combustion performance of gas turbine combustor and merits further, comprehensive studies.  相似文献   

10.
基于现有单点贫油直喷燃烧室,采用数值模拟方法研究了头部几何角度对燃烧室流场特性的影响。分别对比了冷态与燃烧态条件下不同头部几何角对燃烧室轴向速度分布、燃烧效率、总压损失等特性的影响。研究表明:在所研究的几何角度范围内,冷态下头部几何角度对回流区的长度影响很小,对回流区内轴向速度分布具有较大影响。燃烧态下随着头部几何角度的增加,回流区轴向尺寸逐渐增加,中轴线上轴向速度值逐渐降低。燃烧室的出口平均温度、燃烧效率、总压恢复系数基本保持不变,60°结构产生的NO_x生成量最低,30°结构产生的NO_x生成量最高。  相似文献   

11.
空气运动对小型直喷式柴油机着火前喷雾混合过程的影响   总被引:3,自引:2,他引:1  
本在单缸试验柴油机上,采用同步摄影技术,研究了空气运动对不型直喷式柴油机着火前喷雾混合过程的影响。试验结果表明,进气涡流对油束的吹偏作用较小;提高涡流强度使油束保持不被“撕裂”的初始段减小,碰壁前油束端部平均速度降低,油束喷雾锥角增大。提高涡流强度还使油束背风面的“撕裂”程度加剧,顺涡流方向壁面油束扩展加快。着火前燃油喷雾沿燃烧室径向分布与涡流强度和在周向气流作用下油束碰壁后的“撕裂”程度有关。  相似文献   

12.
《能源学会志》2014,87(4):372-382
Recent technologies have been introduced for gas turbine engine to meet with stringent emission regulations. One of the technologies is to introduce recirculation in the combustion zone to control the residence time and mixing by help of swirling flow. Effect of variation in geometric parameters and inlet mass flow of swirler have been examined in this study by help of CFD. Detailed design methodologies have been proposed in this study to design a series of axial swirler with different vane angles and vane numbers. Substantial variation in swirler performance has been observed by changing vane angle, vane number and mass flow. Four different types of axial and radial velocity profiles have been observed. Turbulence distribution pattern shows double peaks at all positions and reduces with increasing axial distance.  相似文献   

13.
采用三维贴体坐标结构化网格,对复杂曲面形状的新型旋流燃烧器(花瓣燃烧器)进行了三维的流场数值实验.模拟了旋流的衰减过程,分析了花瓣燃烧器的流场特点;首次给出了旋流燃烧器回流区的立体形状图,直观地反映了回流区的特性;分析了普通旋流燃烧器和花瓣燃烧器的流场参数,并对掺混系数进行了对比;通过花瓣燃烧器流场特性的研究得出,花瓣燃烧器的回流区是由径向回流区和中心回流区融合构成,端部呈花瓣状,所形成的特殊流场能够使煤粉颗粒从燃烧器喷入炉内后,不是首先向外扩散,而是迅速地进入回流区,与高温烟气迅速混合,形成稳定热源,为煤粉着火燃烧提供了前提条件,具有良好的稳燃性能.  相似文献   

14.
The effect of hydrogen addition in methane–air premixed flames has been examined from a swirl-stabilized combustor under unconfined flame conditions. Different swirlers have been examined to investigate the effect of swirl intensity on enriching methane–air flame with hydrogen in a laboratory-scale premixed combustor operated at 5.81 kW. The hydrogen-enriched methane fuel and air were mixed in a pre-mixer and introduced into the burner having swirlers of different swirl vane angles that provided different swirl strengths. The combustion characteristics of hydrogen-enriched methane–air flames at fixed thermal load but different swirl strengths were examined using particle image velocimetry (PIV), OH chemiluminescence, gas analyzers, and micro-thermocouple diagnostics to provide information on flow field, combustion generated OH radical and gas species concentration, and temperature distribution, respectively. The results show that higher combustibility of hydrogen assists to promote faster chemical reaction, raises temperature in the reaction zone and reduces the recirculation flow in the reaction zone. The upstream of flame region is more dependent on the swirl strength than the effect of hydrogen addition to methane fuel. At lower swirl strength condition the NO concentration in the reaction zone reduces with increase in hydrogen content in the fuel mixture. Higher combustibility of hydrogen accelerates the flow to reduce the residence time of hot product gases in the high temperature reaction zone. At higher swirl strength the NO concentration increases with increase in hydrogen content in the fuel mixture. The effect of dynamic expansion of the gases with hydrogen addition appears to be more dominant to reduce the recirculation of relatively cooler gases into the reaction zone. NO concentration also increases with decrease in the swirl strength.  相似文献   

15.
The aerodynamic characteristics and thermal structure of uncontrolled and controlled swirling double-concentric jet flames at low Reynolds numbers are experimentally studied. The swirl and Reynolds numbers are lower than 0.6 and 2000, respectively. The flow characteristics are diagnosed by the laser-light-sheet-assisted Mie scattering flow visualization method and particle image velocimetry (PIV). The thermal structure is measured by a fine-wire thermocouple. The flame shapes, combined images of flame and flow, velocity vector maps, streamline patterns, velocity and turbulence distributions, flame lengths, and temperature distributions are discussed. The flow patterns of the no-control case exhibit an open-top, single-ring vortex sitting on the blockage disc with a jetlike swirling flow evolving from the central disc face toward the downstream area. The rotation direction and size of the near-disc vortex, as well as the flow properties, change in different ranges of annulus swirl number and therefore induce three characteristic flame modes: weak swirling flame, lifted flame, and turbulent reattached flame. Because the near-disc vortex is open-top, the radial dispersion of the fuel-jet fluids is not significantly enhanced by the annulus swirling flow. The flows of the reacting swirling double-concentric jets at such low swirl and Reynolds numbers therefore present characteristics of diffusion jet flames. In the controlled case, the axial momentum of the central fuel jet is deflected radially by a control disc placed above the blockage disc. This arrangement can induce a large near-disc recirculation bubble and high turbulence intensities. The enhanced mixing hence tremendously shortens the flame length and enlarges the flame width.  相似文献   

16.
This work presents a novel swirler with variable blade configuration for gas turbine combustors and industrial burners. The flow dynamics downstream the swirler was explored using Large Eddy Simulation (LES). The resolved turbulence kinetic energy in the region where the flow exhibits the main flow phenomena was well above 80% of the total turbulent kinetic energy of the flow. It was evidently shown that the new swirler produces a central recirculation zone and a Rankine vortex structure which are necessary for swirl flame stabilization. Two Reynolds-averaged NavierStokes (RANS) simulation cases utilizing the standard and realizable k-ε turbulence models were also conducted for two objectives. The first is to demonstrate the validity of RANS/eddy-viscosity models in predicting the main characteristics of swirling flows with comparison to the LES results. The second objective is to comparatively investigate the flow features downstream the new swirler in both co-rotating and counter-rotating blade configurations. The results show that the counter-rotating configuration produces higher turbulence kinetic energy and more compact recirculation zone compared to the co-rotating configuration.  相似文献   

17.
针对我国燃气轮机燃烧室污染物排放的现状,介绍了各国对民用航空和工业用燃气轮机的排放规定,分析了燃气轮机燃烧室主要污染物的生成机理、影响因素以及减少污染物排放的措施.对先进的低污染燃烧室中具有代表性和发展前景的四种类型燃烧室作了简要的介绍,它们分别为双环预混旋流(TAPS)燃烧室、贫油预混预蒸发(LPP)燃烧室、富油燃烧-焠熄-贫油燃烧(RQL)低污染燃烧室以及驻涡燃烧室(TVC).并且介绍了高温升燃烧室的研究现状以及关键技术难题.最后,对燃烧室火焰筒多斜孔冷却、冲击/多斜孔复合冷却、层板冷却以及冲击/气膜冷却等四种方式的现状进行了讨论.  相似文献   

18.
Flow and heat transfer predictions in modern low emission combustors are critical to maintaining the liner wall at reasonable temperatures. This study is the first to focus on a critical issue for combustor design. The objective of this paper is to understand the effect of different swirl angle for a dry low emission (DLE) combustor on flow and heat transfer distributions. This paper provides the effect of fuel nozzle swirl angle on velocity distributions, temperature, and surface heat transfer coefficients. A simple test model is investigated with flow through fuel nozzles without reactive flow. The fuel nozzle angle is varied to obtain different swirl conditions inside the combustor. The effect of flow Reynolds number and swirl number are investigated using FLUENT. Different RANS-based turbulence models are tested to determine the ability of these models to predict the swirling flow. For comparison, different turbulence models such as standard k ? ε, realizable k ? ε, and shear stress transport (SST) k?ω turbulence model were studied for non-reactive flow conditions. The results show that, for a high degree swirl flow, the SST k?ω model can provide more reasonable predictions for recirculation and high velocity gradients. With increasing swirl angle, the average surface heat transfer coefficient increases while the average static temperature will decrease. Preliminary analysis shows that the k?ω model is the best model for predicting swirling flows. Also critical is the effect of the swirling flows on the liner wall heat transfer. The strength and magnitude of the swirl determines the local heat transfer maxima location. This location needs to be cooled more effectively by various cooling schemes.  相似文献   

19.
以头部涡流片加主燃孔形式的小型发动机环形回流燃烧室为研究对象,采用Fluent软件进行了数值研究,对比分析了有无主燃孔、主燃孔相对位置以及主燃孔轴向位置对该类型燃烧室主燃区流场、温度场以及出口温度分布的影响。结果表明:该类型燃烧室主要通过火焰筒头部圆形结构、涡流片形成回流区,而内外环主燃孔的射流主要起到截断主流、促进回流区形成以及改变回流区形态的作用;主燃孔相互交错,有利于促进内外环主燃孔的射流相互对冲剪切,形成较为饱满的回流区;主燃孔轴向位置向燃烧室出口方向移动,主燃孔射流截断主流和挤压主流的效果减弱,出口温度分布系数急剧变大。  相似文献   

20.
为了解决某型航空发动机燃烧室冒烟数较大的问题,通过分析航空煤油的燃烧化学反应过程和燃烧室内油气掺混燃烧过程,确认了炭烟的产生主要发生在初级反应阶段火焰筒的头部区域。因此提出改进措施,将火焰筒头部的单级旋流器更换为旋流杯,并对旋流杯的结构参数进行调整。采用数值模拟及扇形试验对改进前后的火焰筒性能进行对比分析。研究表明:相对于单级旋流器,旋流杯使燃烧室头部流场由单涡结构变为双涡结构,燃油分布更加均匀,在头部高温的环境中降低了局部富油程度,从而减少了头部炭烟的生成;改进后,燃烧室冒烟数大幅降低,总压恢复系数变化不大,贫油熄火油气比达到了0.004 6,能够满足发动机使用要求。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号