共查询到20条相似文献,搜索用时 0 毫秒
1.
信息抽取在电子病历上的应用取得丰富的研究成果,使得非结构化的生物医学数据得以利用。关系抽取是信息抽取的重要子任务,是从数据转化为知识的桥梁。根据关系抽取存在的不同问题以及不同解决方案,对关系抽取进行详细分类。整理了电子病历关系抽取领域的相关评测任务和具有代表性的数据集。分阶段对关系抽取在电子病历文本上的应用进展进行综述,重点介绍了深度学习方法在关系抽取上的广泛应用,以及现阶段预训练模型在电子病历关系抽取任务上的进展。对该领域进行展望,提出了未解决的问题以及未来的研究方向。 相似文献
2.
电子病历命名实体识别和实体关系抽取研究综述 总被引:2,自引:0,他引:2
电子病历(Electronic medical records,EMR)产生于临床治疗过程,其中命名实体和实体关系反映了患者健康状况,包含了大量与患者健康状况密切相关的医疗知识,因而对它们的识别和抽取是信息抽取研究在医疗领域的重要扩展. 本文首先讨论了电子病历文本的语言特点和结构特点,然后在梳理了命名实体识别和实体关系抽取研究一般思路的基础上,分析了电子病历命名实体识别、实体修饰识别和实体关系抽取研究的具体任务和对应任务的主要研究方法. 本文还介绍了相关的共享评测任务和标注语料库以及医疗领域几个重要的词典和知识库等资源. 最后对这一研究领域仍需解决的问题和未来的发展方向作了展望. 相似文献
3.
随着生命科学技术的发展,生物医学领域文献呈指数级增长,如何从海量文献中挖掘、抽取有价值的信息成为生物医学领域新的研究契机。作为信息抽取的核心技术,命名实体识别和关系抽取成为生物医学文本挖掘的基础和关键,其主要工作为识别生物医学文本中的实体,并提取实体间存在的生物医学语义关系。当前深度学习技术在各领域自然语言处理任务中取得了长足的发展,旨在总结基于神经网络的生物医学实体识别和关系抽取的方法,从概念、进展、现状等多角度全面阐述各项技术在生物医学领域的发展历程,进一步明确生物医学文本信息抽取工作的探索方向。 相似文献
5.
深度学习实体关系抽取研究综述 总被引:3,自引:0,他引:3
实体关系抽取作为信息抽取、自然语言理解、信息检索等领域的核心任务和重要环节,能够从文本中抽取实体对间的语义关系.近年来,深度学习在联合学习、远程监督等方面上的应用,使关系抽取任务取得了较为丰富的研究成果.目前,基于深度学习的实体关系抽取技术,在特征提取的深度和模型的精确度上已经逐渐超过了传统基于特征和核函数的方法.围绕有监督和远程监督两个领域,系统总结了近几年来中外学者基于深度学习的实体关系抽取研究进展,并对未来可能的研究方向进行了探讨和展望. 相似文献
6.
7.
8.
《软件》2019,(8):208-211
电子病历是医疗单位对门诊部、住院患者临床诊疗与指导干预的、数字化的医疗服务工作的相关记录[1]。为了完成电子病历的高效的信息提取工作,本文使用深度学习的相关算法对电子病历中的文本进行命名实体的识别工作。其算法选择LSTM(Long-Short Term Memory,长短期记忆人工神经网络)和MLP(Multi-Layer Perception,多层神经网络),其用于构建算法模型。该本使用BP网络(Back—PropagationNetwork,后向传播)训练数据模型,应用已经标注的病历数据进行相应的训练与测试。该本通过实验证明,深度学习的算法在电子病历命名实体识别中是高效的[2]。 相似文献
9.
针对传统方法在中文电子病历实体抽取任务中存在对词典和分词工具过于依赖,无法充分利用上下文特征等问题,本文提出一种基于字嵌入卷积(CNN)、双向门控循环单元(BGRU)和条件随机场(CRF)结合的中文电子病历实体抽取模型。首先利用字嵌入方法提取出潜在词特征,然后在使用字词特征联合方式的同时使用注意力机制突出特定的信息,最后通过合理性约束得到最终结果。该模型充分使用了字词特征避免了实体抽取受错误分词的影响,并且减少了人工构造特征的过程,提高了实体抽取效率。实验结果表明,该模型在诊断名称、症状名称、治疗方式类别的实体抽取中,F值表现优于传统的Bi-LSTM-CRF模型。 相似文献
10.
基于指挥信息系统的作战文书智能处理是未来指挥智能化的基础,采用自然语言处理的方法从非结构化作战文书中抽取出结构化的作战数据对于辅助指挥员决策有着重要意义。其中作战文书实体之间的语义关系是战场态势理解的基础,对于获取对抗双方中作战编成、部署位置、目标状态、指挥关系具有重要价值。针对作战文书实体关系抽取中传统方法人工构建特征不充分、军事领域中文分词不准确、输入与输出之间的相关性考虑不足等问题,笔者提出了基于深度学习的关系抽取方法。结合双向长短时记忆(Bi-directional Long Short-Term Memory,Bi-LSTM)神经网络对较长句子上下文的记忆能力、字向量(Character embedding)对汉字语义的表示能力和注意力机制(Attention Mechanism,Att)对输入与输出相关性的学习能力,构建了Character+Bi-LSTM+ Attention实体关系抽取模型。为验证方法的有效性,在学员训练文书语料集上进行了实验,实验结果表明,该方法抽取效果较传统方法有进一步提高。 相似文献
11.
12.
针对现有实体和关系联合抽取方法中存在的实体与关系依赖建模不足、实体发生重叠难以抽取其所涉及的多个关系的问题,设计了基于深度学习的联合抽取框架。首先针对依赖建模不足问题,从预训练语料中提取实体共现特征,建模了实体间的潜在语义关系和实体与关系之间的依赖关系。其次提出了新颖的指针标注方法,该标注方法可以通过指针表示关系类别,由于任一实体可以被多个指针指向,所以可以在一段文本中标注重叠的实体并抽取多个实体—关系三元组结果。最后,为了有效利用单词的丰富语义和指针之间依赖的信息,设计了一个标签感知注意力机制,融合了包括来自编码层的字词信息、相关的共现语义信息。与研究中前沿的联合提取方法相比,该方法在百度DuIE测试集上实现了F1值的增加。通过实验结果表明指针标注方法在一定程度上可以解决实体重叠问题。 相似文献
13.
目前实体识别和关系抽取任务大多采用流水线方式,但该方法存在错误累积、忽略两个任务相关性和信息冗余等诸多问题。结合中医文本的特点,提出一种基于深度学习的中医实体关系联合抽取方法。该方法使用改进的序列标注策略,将中医的实体关系联合抽取转换成序列标注任务,词向量与字符向量并联拼接作为双向LSTM-CRF输入,利用双向LSTM神经网络强大的特征提取能力,以及CRF在序列标注上的突出优势,结合优化的抽取规则完成中医实体关系联合抽取。在中医语料库上的实验结果表明,实体关系联合抽取的F1值可以达到80.42%,与传统流水线方法以及其他方法相比,实验效果更佳。 相似文献
14.
15.
16.
实体关系自动抽取 总被引:36,自引:7,他引:36
实体关系抽取是信息抽取领域中的重要研究课题。本文使用两种基于特征向量的机器学习算法,Winnow 和支持向量机(SVM) ,在2004 年ACE(Automatic Content Extraction) 评测的训练数据上进行实体关系抽取实验。两种算法都进行适当的特征选择,当选择每个实体的左右两个词为特征时,达到最好的抽取效果,Winnow和SVM算法的加权平均F-Score 分别为73108 %和73127 %。可见在使用相同的特征集,不同的学习算法进行实体关系的识别时,最终性能差别不大。因此使用自动的方法进行实体关系抽取时,应当集中精力寻找好的特征。 相似文献
17.
电子病历(EMR)是医疗信息快速发展的产物,目前以非结构化文本形式存储。通过使用自然语言处理(NLP)技术,在非结构化文本中提取出大量医学实体,将有助于提升医务人员查阅病历效率,同时识别的成果也将辅助于接下来的关系提取和知识图谱构建等研究。介绍常用的若干个数据集、语料标注标准和评价指标。从早期传统方法、深度学习方法、预训练模型、小样本问题处理四个方面详细阐述电子病历命名实体识别方法,对比分析各模型自身的优势及局限性。探讨了目前研究的不足,并对未来发展方向提出展望。 相似文献
18.
关系抽取(RE)是为了抽取文本中包含的关系,是信息抽取(IE)的重要组成部分。近年来,研究人员利用深度学习技术在该领域开展了深入研究。由于神经网络类型丰富,基于深度学习的关系抽取方法也更加多样。该文从关系抽取的基本概念出发,对关系抽取方法依据不同的视角进行了类别划分。随后,介绍了基于深度学习的关系抽取方法常用的数据集,并总结出基于深度学习的关系抽取框架。在此框架下,对关系抽取方法在面向深度学习的输入数据预处理、面向深度学习的神经网络模型设计等方面的具体工作进行了分析与评述,最后对未来的研究方向进行了探讨和展望。 相似文献
19.
在自然语言处理领域,信息抽取一直以来受到人们的关注.信息抽取主要包括3项子任务:实体抽取、关系抽取和事件抽取,而关系抽取是信息抽取领域的核心任务和重要环节.实体关系抽取的主要目标是从自然语言文本中识别并判定实体对之间存在的特定关系,这为智能检索、语义分析等提供了基础支持,有助于提高搜索效率,促进知识库的自动构建.综合阐述了实体关系抽取的发展历史,介绍了常用的中文和英文关系抽取工具和评价体系.主要从4个方面展开介绍了实体关系抽取方法,包括:早期的传统关系抽取方法、基于传统机器学习、基于深度学习和基于开放领域的关系抽取方法,总结了在不同历史阶段的主流研究方法以及相应的代表性成果,并对各种实体关系抽取技术进行对比分析.最后,对实体关系抽取的未来重点研究内容和发展趋势进行了总结和展望. 相似文献
20.
电子病历实体识别是智慧医疗服务中一项重要的基础任务,当前医院诊疗过程中采用人工分析病历文本的方法,容易产生关键信息遗漏且效率低下。为此,提出一种结合BERT与条件随机场的实体识别模型,使用基于双向训练Transformer的BERT中文预训练模型,在手工标注的符合BIOES标准的语料库上微调模型参数,通过BERT模型学习字符序列的状态特征,并将得到的序列状态分数输入到条件随机场层,条件随机场层对序列状态转移做出约束优化。BERT模型具有巨大的参数量、强大的特征提取能力和实体的多维语义表征等优势,可有效提升实体抽取的效果。实验结果表明,论文提出的模型能实现88%以上的实体识别F1分数,显著优于传统的循环神经网络和卷积神经网络模型。 相似文献