首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
输气场站内管道敷设环境复杂,需要建立基于风险的管道安全检测和评价体系,超声导波具有检测灵敏度高、缺陷定位准确、检测距离长以及检测缺陷类型广泛的优点,因此得以广泛应用。本文简要介绍超声导波的特性,并结合天然气输气站超声导波检测案例,对检测过程和结果进行分析。从而为场站管道的维护决策提供技术支持。  相似文献   

2.
介绍了超声导波在管道缺陷检测中的应用,并介绍了超声导波的检测原理。利用超声导波对管道缺陷进行检测,通过实验对缺陷回波和转换模态信号进行分析,即可达到对缺陷准确定位的目的。  相似文献   

3.
根据相关资料和历年的检测结果分析,内外壁腐蚀导致壁厚减薄是海上平台压力管道失效的重要原因之一。采用传统方法对海上平台管道进行检测,需要面对覆盖保温、高空、舷外等诸多难题,检测效率低下。低频导波检测是通过探头传感器被激励,发射出超声波信号,该信号可以覆盖整个检测管道圆周管壁,并且能够沿着管道向探头的远处方向传播。当遇到管道内外壁腐蚀或缺陷时,由于内外壁腐蚀或缺陷往往伴随金属的损失,导致管道横截面(厚度)发生了改变,造成腐蚀或缺陷处产生回波,通过仪器采集回波信号,借助专业的分析软件,便可以判断管道的内外壁腐蚀和缺陷的位置和损伤程度。本文通过导波技术的现场应用案例,证明低频导波技术可以用作压力管道的腐蚀检测,并且分析和总结了该技术在海洋平台压力管道应用的特点。  相似文献   

4.
基于小波变换的超声导波管道腐蚀C扫描   总被引:1,自引:0,他引:1       下载免费PDF全文
戴波  孙雅静  唐建 《化工学报》2013,64(12):4599-4607
常规超声导波回波信号处理是基于A扫描分析,存在易漏检、无法定位缺陷周向位置等不足,选用L(0,2)模态中心频率为48kHz的导波进行管道检测实验,通过对A扫描检测回波与腐蚀缺陷的对比分析,提出了对A扫描检测回波先进行小波变换处理,再进行log线性化处理,最后使用C扫描显示管道腐蚀检测结果的回波信号处理方法。实验表明,所提方法可有效地检测各类管道腐蚀缺陷,并准确地定位缺陷的轴向和周向位置,为导波技术的实际工程应用提供简单有效的方法。  相似文献   

5.
压力管道腐蚀检测至关重要。以超声导波检测技术的理论作为基础,人工模拟了腐蚀坑等典型缺陷,取得了较好的试验检测效果;通过具体管道的超声导波检测,证实该方法可以成功应用于实际管道检测。  相似文献   

6.
方珍 《化工设备与管道》2010,47(4):61-63,67
在对低频导波与远场涡流技术原理进行初步分析的基础上,提出了低频导波与远场涡流组合技术应用于工业管道腐蚀缺陷检测的方法:首先用低频导波技术对管道进行快速扫描,在发现异常信号区域,利用远场涡流技术进行缺陷精确定位并量化。利用该组合技术对某架空管段缺陷进行了检测应用,结果表明两种技术能相互补充,并有效提升了管体腐蚀缺陷的检测效果。  相似文献   

7.
张亚彬  夏立 《广州化工》2010,38(4):172-177
超声导波检测应用的范围与导波激发的原理有关,根据高温管道的特点,选择采用磁致伸缩效应作为高温管道超声导波检测的激发原理。介绍了采用新型基于磁致伸缩效应的导波仪MsS 3030以高温管道的导波检测为例进行的现场检测,同时利用现场测厚验证导波检测的可靠性。结果证明,基于磁致伸缩效应的导波检测可以实现高温管道的在线检测,能有效发现腐蚀等面积缺陷,具有广泛的应用前景。  相似文献   

8.
通用结合应用风险分析技术和超声导波检测技术,对管道的腐蚀状况进行分析和检测。检测结果表明,管道存在壁厚减薄,经过常规无损检测,缺陷得到验证。经分析,造成局部减薄的原因为弯头处冲刷腐蚀减薄,其严重程度远超风险分析结果的预期。最后,对超声导波技术的适用性及使用中的问题进行了总结。  相似文献   

9.
长距离超声导波检测技术具有检测效率高、可免拆除管道包覆层等优点,但同时也存在信号解释难度大、缺陷周向定位困难等局限性.基于以上问题,采用国产MRCS超声导波B扫成像系统进行了对比试管和现场检测验证,结果表明:超声导波B扫成像技术可降低导波信号解释难度、实现缺陷周向定位,可作为长距离超声导波的补充检测.  相似文献   

10.
管道母材质量状况直接影响油气管道能否安全运行。本文通过对超声导波工作原理的分析,说明通过导波扫查可显示管道母材的腐蚀或其它特征,实现在一个测试点对一段距离的管道进行100%的面积及深度覆盖性检测,再辅以其他设备对疑似缺陷范围进行精细扫查,就能完成管道母材的高效检测。通过将该方法运用到油气管道母材的实际检测中,证实该方法是行之有效的。  相似文献   

11.
陈建文 《广东化工》2006,33(6):79-81
乙烯酮(双乙烯酮)是十分重要的化工中间体,其下游产品较多。江苏某化工厂开发生产乙烯酮(双乙烯酮)下游产品三十多个,年生产规模三万多吨,是国内以乙烯酮(双乙烯酮)为中间体生产精细化学品的综合骨干企业。针对乙烯酮(双乙烯酮)下游产品废水特点,该厂结合企业实际,开展了产品优化,结构调整,清洁生产,资源循环利用,节水降耗等工作,从源头削减了污染物的生产。同时投资二千多万元新建预处理装置三套,6000m3/d废水生化处理装置一套,使全厂乙烯酮(双乙烯酮)下游产品的废水得到了有效的治理。  相似文献   

12.
13.
14.
姬波  刘奇峰 《河南化工》2005,22(3):43-44
利用组件技术开发化工原理实验课件,给出了系统层、组件库层和应用层的架构划分。重点讨论了组件库的设计,给出了流体阻力这一典型实验的实现描述。实践证实,基于组件技术可以提高仿真实验的开发效率。  相似文献   

15.
阐述并比较了几种加压设备在乙炔加压清净过程中的性能和特点。  相似文献   

16.
The miscibility of various amorphous polybutadienes with mixed microstructures of 1,4 addition units (cis, 1,4 and trans 1,4) and 1,2 addition units have been investigated. The studies here involved optical transparency, differential scanning calorimetry, and small angle light scattering. It was found that a 90 percent (cis) 1, 4 addition polybutadiene was immiscible with high (91 percent) 1,2 addition polybutadiene. Reduction of the 1,2 content to 71 percent induced an upper critical solution temperature (UCST) with the cis 1,4 polymer. Polybutadienes with 50 percent and 10 percent 1,2 contents were miscible above the crystalline melting temperature of the cis 1,4 polybutadiene. Immiscibility of the 91 percent 1,2 addition polymer was also found with a 10 percent 1,2 polybutadiene. The latter polymer also exhibits an UCST with the 71 percent 1,2 polymer. The results are used to interpret the characteristics of blends of polybutadienes of varying microstructure.  相似文献   

17.
唐蕾 《粉煤灰》2013,(5):5-6
以F类粉煤灰为例,详细介绍了测定粉煤灰中烧失量的步骤、计算数学模型、影响测量不确定度的因素以及各项测量不确定度分量评定,人员、设备、材料、方法、环境都是影响测量不确定的因素。  相似文献   

18.
周云  温集强 《水泥》2007,(10):29-30
我厂3号回转窑(Φ4m×60m)生产线在1996年年底由SP窑(产量912t/d)改为NSP窑(产量1320t/d),预分解系统为四级旋风预热器带离线式分解炉  相似文献   

19.
水泥水化热是中、低热水泥和核电工程用水泥的一项关键的技术指标。全球范围内测定水泥水化热的方法有溶解法、直接法/半绝热法、等温传导量热法三种。本文总结了中、美、欧相关方法标准,对其测试原理、仪器设备、试验过程等方面进行了比对,并对其在领域的应用做了简单的概括。  相似文献   

20.
Conclusions It is significant that the purification on a single passage of viscose through porous ceramic corresponds to the result of a two-stage filtration of it in industrial filter-presses with standard fillings.Kiev Combine. Kiev Technological Institute of Light Industry. Translated from Khimicheskie Volokna, No. 3, pp. 20–22, May–June, 1969.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号