首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 531 毫秒
1.
依托洛阳市周山大道下穿隧道深基坑工程,结合周边复杂环境及水文地质条件,研究渗流作用对卵石地层隧道基坑及邻近管线的影响规律。采用MIDAS GTS NX软件建立模型,结合现场监测分析了开挖过程中基坑周边土体位移、地表沉降值、支护变形规律,以及基坑开挖和降水对邻近管线变形的影响,并将数值计算结果与现场监测数据进行对比分析。结果表明:围护结构水平位移整体为前倾曲线,随嵌入深度先增大后减小,最大位移为13.94 mm,位于桩身中部,并在规范允许范围内;降水期间地表沉降程度加剧,与基坑距离1.5倍设计开挖深度以上时沉降几乎占据总位移60%以上;开挖深度超过6 m时邻近管线较上一工况最大沉降差为3.35 mm,竖向变形整体为下沉形态,位移最终呈现两端小、中间大的结果,具有明显空间效应。  相似文献   

2.
基坑开挖对邻近既有下卧隧道的影响分析   总被引:1,自引:1,他引:0  
随着城市化的发展,骑跨于邻近地铁隧道之上的基坑开挖工程越来越多,在基坑开挖过程中如何更好的控制对既有隧道变形的影响是一个亟待解决的问题。本文运用ABAQUS有限元软件,对下卧地铁上、下行线隧道顶、侧、底面的水平和竖向位移进行了三维数值模拟计算和对比分析,结果表明:基坑开挖对邻近既有下卧隧道的变形影响明显,位于基坑中部位置以下的隧道竖向位移相对较大,靠近基坑边缘位置的隧道水平位移相对较大;同一隧道顶部位置的竖向位移大于侧面和底部的位移,隧道侧面的水平位移大于顶、底部的位移;受基坑开挖卸荷的影响,隧道的自身变形表现为竖向直径增大,水平向直径减小。对位于既有隧道上方的基坑开挖要引起关注。  相似文献   

3.
《焦作工学院学报》2021,(1):162-168
为研究软土地区深基坑分区开挖及其施工顺序对自身和邻近城轨隧道的影响,以珠海某基坑工程为背景,运用有限元软件建立该工程的三维数值模型并模拟其施工过程,分析了基坑开挖方式和开挖顺序对基坑支护桩和邻近隧道的影响。结果表明:对于超大深基坑,分区开挖施工相比于整体开挖更好地利用了时空效应,有效控制基坑变形和减小对邻近隧道的影响;在分区方式相同的前提下,采用不同开挖顺序也会改变基坑的卸荷路径,最终导致同一基坑产生不同的隧道变形特性。由此得出,针对软土深基坑在施工方法上不仅要采用大化小的分区开挖方式,而且还应优先选择开挖释放量大的区域并搭配合理的支护加固方式,从而减少对基坑和邻近隧道的影响。  相似文献   

4.
以南宁华丰城深基坑工程施工为基础,考虑土体弹塑性及土体与结构的相互作用,运用有限元软件Midas分析了深基坑开挖对邻近既有轨道交通1号线区间隧道的影响。计算结果表明,在基坑开挖阶段,隧道的位移以向上的竖向位移为主,向坑内的水平位移略小,开挖到基坑底时达到最大值,水平方向为7.96mm,竖直方向为8.69mm;回填阶段改变位移方向,回填完成时达到最大值,水平方向为4.61mm,竖直方向为9.70mm。南宁华丰城深基坑工程施工引起的隧道裂缝宽度均小于地铁隧道变形控制标准10.00mm的要求。  相似文献   

5.
运用ABAQUS有限元软件,对下卧地铁上、下行线隧道顶、侧、底面的水平和竖向位移进行了三维数值模拟计算和对比分析,结果表明:基坑开挖对邻近既有下卧隧道的变形影响明显,位于基坑中部位置以下的隧道竖向位移相对较大,靠近基坑边缘位置的隧道水平位移相对较大;同一隧道顶部位置的竖向位移大于侧面和底部的位移,隧道侧面的水平位移大于顶、底部的位移;受基坑开挖卸荷的影响,隧道的自身变形表现为竖向直径增大,水平向直径减小。对位于既有隧道上方的基坑开挖要引起关注。  相似文献   

6.
依托中铁十四局北京新机场段土建预留基坑工程,利用拉线式光纤Bragg光栅位移计对基坑开挖施工过程中边坡稳定性进行实时监测,并利用ANSYS软件对基坑开挖支护的全过程进行数值模拟。结果表明:数值模拟结果与实际监测数据规律符合较好;基坑东侧的位移计11水平位移最大值达到14.23 mm,基坑西侧的位移计12水平位移最大值为2.15 mm,基坑东侧的边坡位移值比西侧较大;基于数值模拟结果,在车辆和房屋荷载作用下,基坑周边沉降最大值为9.23 mm,基坑采用挂网喷混凝土和钢支撑联合支护后,水平位移较支护前减少;光纤Bragg光栅传感器用于基坑变形监测是可行的,能够真实地反映出现场的变化情况。  相似文献   

7.
基坑开挖卸荷会对邻近隧道产生影响,因此有必要对隧道的变形进行预测,确保隧道正常运行。针对目前计算模型的分析方法未考虑基坑壁应力卸荷对隧道位移的影响,以及有限元分析过程较为复杂繁琐,提出采用Mindlin解计算基坑壁与坑底卸荷的附加应力。然后将隧道结构视为弹性地基无限长梁,将开挖引起的附加应力施加于隧道结构上,建立隧道结构纵向变形方程,从而得到隧道位移及内力的计算公式。最后,将计算方法与数值模拟算例、工程实测进行对比分析,计算结果与其较为吻合。  相似文献   

8.
以紧邻宁波地铁1号线某区间的深基坑为例,基坑开挖导致邻近左线隧道产生明显的位移和变形,局部位置甚至出现渗漏和开裂.结合现场资料和室内试验,获得硬化土模型参数,建立基坑和隧道共同作用的三维有限元模型,对比基坑开挖影响下隧道位移计算值与现场实测值,通过探究基坑围护结构、周围土体位移规律,分析并比较基坑分块开挖、被动区土体加固以及隔断墙等几种典型隧道保护措施的效果.分析结果表明,基坑分块开挖对隧道保护具有明显作用,而被动区土体加固和隔断墙对隧道保护效果较差.  相似文献   

9.
基坑开挖势必导致下部隧道发生变形,威胁地铁隧道的安全。通过Midas/GTS有限元软件,对合肥地铁1号线上部基坑开挖过程中隧道的位移进行了数值模拟,分析了不同工况下隧道横向和纵向变形。结果表明:基坑中心下方的隧道拱顶产生最大竖向位移,且在基坑开挖范围内隧道竖向位移变化最大。隧道横向水平位移最大值发生在距离基坑中心8 m下的拱腰处,并不是在基坑中心位置。数值计算结果和隧道原位测试结果比较接近,说明数值模拟的边界和参数的选取是符合实际工况的,本文的方法可以为今后类似工程提供参考。  相似文献   

10.
为探究分区开挖顺序对软土区深基坑钢筋混凝土支护结构变形的影响,选择某省软土地区的实际深基坑开挖工程作为研究对象,详细分析基坑土层的特征,确定物理性能指标和力学性能指标;设计支护结构变形数值模拟方法、支护的受力条件和边界荷载,构建数值模拟几何模型,并对支护结构变形进行模拟和分析。结果表明:以邻近隧道的基坑作为监测对象,在水平和竖向位移模拟中得到的数据值与实测值变化趋势一致。该模型可以有效分析分区开挖顺序对深基坑支护结构变形影响,具有验证和预测分析的作用。  相似文献   

11.
从工程实际出发,建立考虑基坑坑底及侧壁卸荷作用的基坑开挖引起的附加荷载计算模型;基于Mindlin解给出由基坑开挖所引起的邻近隧道处的竖向附加荷载;引入能考虑隧道任意埋深效应的修正基床反力系数, 将既有隧道简化为搁置于Pasternak地基上的Euler-Bernoulli梁,进而提出基坑开挖下邻近既有隧道响应的简化计算方法. 所提方法能考虑隧道埋深效应以及地基剪切效应,与工程实际更为接近. 通过与三维有限元以及2组已发表工程实测数据的对比,验证所提简化计算方法的合理性与适用性. 针对地基弹性模量、地基剪切模量、隧道纵向等效抗弯刚度、隧道-基坑夹角、隧道埋深、隧道-基坑间距以及基坑几何形状等主要参数对隧道纵向位移的影响进行系统分析. 结果表明:隧道与基坑平行工况下的隧道最大位移是垂直工况下的1.60倍;提高隧道纵向抗弯刚度可以有效减小隧道的最大位移,但这种“削弱作用”会随隧道-基坑间距的增大而减小;随着隧道埋深、隧道-基坑间距的增大,隧道最大位移呈非线性递减规律;基坑的“长开挖”会影响隧道的位移和隧道隆起范围,而“短开挖”则主要影响隧道的位移. 研究成果可以为较为合理地预测既有盾构隧道在邻近基坑开挖下的响应规律提供理论支持.  相似文献   

12.
地铁保护区范围内工程施工不可避免地涉及对既有城市轨道交通设施的影响与保护问题.以徐州市津浦东路排水工程基坑上跨地铁1号线盾构区间为背景,采用精细化的数值模拟方法,针对不同基坑开挖卸荷条件下既有盾构隧道的影响进行研究.研究结果表明:一次开挖卸荷20 m,引起隧道结构变位位移大于5 mm,不满足地铁安全保护变形控制值要求;优化后的分段开挖方案,盾构区间的各项变形指标均在安全控制要求范围内;基坑开挖卸荷对隧道结构的受力状态影响较小,经检算,隧道结构的受力状态基本未改变,隧道主要呈压弯受力.  相似文献   

13.
针对某市南北快速干线隧道17. 8 m深基坑工程,采用同济启明星Qimstar~?基坑支护结构软件,对基坑开挖过程中围护桩的受力情况进行模拟计算,并用测斜仪对围护桩的水平位移进行现场实时监测,研究桩体受力特点及变形规律.结果表明:模拟结果与监测结果在数值上比较接近,且变化趋势一致;桩身最大水平位移与基坑土层的开挖深度密切相关,随开挖深度的增加而发生非线性增大;受基坑时空效应的影响,桩体最大变形部位不断下移,桩身形状也由最初的前倾形曲线逐步向弓形曲线发展,最终在距基坑设计开挖总深度的2/3处达到11. 25 mm的最大值;在基坑底板浇筑完成后,围护桩变形趋于稳定.  相似文献   

14.
目的研究基坑开挖对邻近既有下卧盾构隧道结构产生的附加应力及不均匀变形,为施工阶段既有隧道的风险评估及控制措施提供参考.方法以哈大客专沈阳站房改造工程为背景,探讨了基坑开挖卸载对下卧盾构隧道造成的主要风险因素及盾构管片破坏的类型,针对土体力学参数的空间变异性及随机性引入蒙特卡洛模拟与三维有限元相结合的方法对衬砌结构的风险事故发生概率进行定量分析.结果基坑开挖卸载之后,隧道横向位移及管片最大压应力超出规定值的概率均为0;上抬变形量及管片最大拉应力超出规定值概率分别为39.8%、2.29%.多种因素下盾构管片总失效概率为41.18%.结论基坑开挖方法要遵循减少单次卸荷量及隧道穿越跨度的原则,并且开挖后应尽量减少基坑的放置时间.  相似文献   

15.
为明确基坑开挖过程中邻近隧道的力学响应特征,利用有限元数值模拟软件,对隧道管片的变形和内力进行分析,通过控制开挖过程中水头和水压力的变化,分析基坑开挖过程中地下水渗流对邻近隧道的影响。结果表明:基坑开挖会导致邻近隧道的变形和内力变化,考虑地下水渗流作用时隧道的变形和内力会显著增加,并且随着基坑开挖深度的增加,隧道管片的变形和内力也随之增大。  相似文献   

16.
在城市建设中,深基坑开挖会对邻近既有地下管线产生较大威胁。目前,基于有限元数值模拟和传统弹性地基梁模型分析方法无法考虑由于管线与土体之间刚度和变形的差异性而造成的管土相互分离现象,使得对于基坑开挖引起管线变形的预测偏于不安全。基于Pasternak弹性地基梁理论,引入管土相互分离计算模型,推导了基坑开挖引起的邻近管线变形计算解析解。参数分析结果表明,管线最大位移随管土分离段长度的增大而增大,且当管线抗弯刚度较小时,土体剪切作用对管线变形影响较大。通过理论计算结果和有限元数值模拟结果及现场实测数据的对比,验证了分析模型的适用性。  相似文献   

17.
随着近年来高层建筑的大规模建设,基坑开挖深度逐渐增大,由于深基坑通常位于城市的繁华地带,且常常紧邻各种建筑物,如何处理好基坑开挖及支护等施工过程对周边环境的影响,成为基坑工程研究的关键。本文以近接浅基础建筑物的桩锚支护结构深基坑为工程背景,基于现场实测数据深入分析了桩体变形、桩顶位移和建筑物沉降等变化规律,基于Plaxis有限元软件建立数值模型,经模型计算结果与现场监测数据对比选取合理的土体本构模型,探讨了邻近建筑物基础位置和地基附加应力两个关键参数对桩锚支护结构基坑与邻近建筑物本身的影响规律。研究表明:混凝土支撑和冠梁在控制围护桩顶变形的同时会增大坑角效应的影响范围;对于基坑开挖卸载问题,HS模型相对于MC模型具有更准确的模拟效果;基坑施工主影响区域约围护结构后方2.5He(基坑开挖深度),建筑物平均沉降最大值和倾斜度最大值位置分别位于距围护结构约0.6He和1.1He处;建筑物平均沉降值δva最大值位置与地表沉降最大值位置吻合,倾斜度最大值位置约位于地表沉降曲线反弯点处;针对本工程,当建筑物基础埋深为2.5m,基坑围护桩与建筑物中心距离在7.5-52.5m范围内变化时,建筑物平均沉降和倾斜度最大值分别约为8.3mm和0.00025;平均每增高一层建筑物,其沉降值和倾斜度分别增加约0.9mm和0.7×10-4,基坑围护结构最大侧移量增加1.4-2.0mm,其增量随层数增高而增加。  相似文献   

18.
地铁暗挖车站近接既有结构施工响应分析   总被引:2,自引:1,他引:1  
以北京地铁15号线奥林匹克公园站近接既有隧道结构为工程背景,采用三维数值模型对其施工响应进行分析和动态模拟,并与现场实测进行对比,可得以下结论:上部小导洞开挖引发的地表沉降占总位移的69.3%,为暗挖车站近接既有结构施工的关键步序;上部小导洞开挖建议采取超前注浆加固、缩短开挖进尺、及时施作桩顶冠梁及钢管柱等;地表沉降最大值位于暗挖车站中线部位,影响范围为车站中线两侧约40 m;暗挖车站施工完成后,既有隧道结构竖向位移最大值为11.06 mm,满足规范安全要求。  相似文献   

19.
以广西某加油站油库和附近楼盘基坑开挖为例,通过ABAQUS有限元软件建立对应三维模型,分别模拟了油库基坑和楼盘基坑的开挖过程,同时考虑基坑-地基-邻近建筑结构的相互作用,分析基坑开挖引起的邻近建筑物变形,根据建筑物地基控制标准评价油库和楼盘基坑开挖分析对邻近建筑物的影响.分析表明:模拟结果与现场勘测中建筑物情况一致,并且基坑阳角处变形及影响范围远远大于阴角;基坑变形对周围的影响呈现出以中心向四周扩散的特点,其最大水平位移处于临边中部;在同一支护深度下,基坑边缘最大水平位移与临边长度呈正相关.  相似文献   

20.
为了研究上下台阶法和CD法等不同施工工法及不同开挖步距下对大断面板岩隧道开挖围岩受力及变形的影响规律,基于有限元基本原理对各■隧道的施工工况进行模拟分析,得到了隧道开挖过程中软弱围岩的应力场和位移场,并对隧道围岩稳定性进行了探讨.研究结果表明:采用两台阶法模拟隧道开挖过程中整个施工过程中应力最大值为3.550 MPa,洞室周边的应力影响范围为5~20 m,在隧洞跨径的1.5倍以内;采用CD法模拟隧道施工时洞周发生的位移较小,拱顶下沉和水平收敛的位移量与两台阶法施工的位移量相比分别减少了27.8%和34.0%;模拟不同开挖步距下隧道拱顶沉降和水平收敛的位移变形大致表现出二次多项式的函数关系,为隧道施工期的安全稳定及控制技术提供数据支撑及理论依据.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号