首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
针对滚动轴承在变工况环境中网络特征提取能力不足的问题,提出了一种域对抗图卷积注意力迁移学习的故障诊断方法(DAGRESL)。首先,通过残差神经网络(residual network, Resnet)提取输入的轴承故障信息特征并通过Simam注意力模块增强Resnet的特征表达能力;其次,利用图生成层学习Resnet的特征数据并挖掘样本结构特征之间的关系来构造实例图;然后,利用图卷积网络(graph convolutional network, GCN)对实例图进行建模;最后,利用域判别器和局部最大平均差异(local maximum mean discrepancy, LMMD)对齐子域和全局域之间的分布并通过标签分类网络完成故障分类。通过在SQI-MFS轴承数据集的实验结果证明了所提出的DAGRESL模型能够精准地区分变工况轴承故障类型,有效解决了滚动轴承在变工况环境中网络特征提取能力不足的问题。  相似文献   

2.
针对噪声环境下一维卷积神经网络单一卷积拓扑结构难以准确诊断齿轮箱故障的难题,提出一种基于二维特征图和深度残差收缩网络(TM-DRSN)的故障诊断方法。根据采集到的齿轮箱振动信号,基于重叠采样方法获取故障数据样本,并分为训练集和测试集;基于横向插样法将一维数据样本构建成便于DRSN输入的二维特征图,在DRSN输入层构建宽卷积核层作为第一特征提取层;将残差收缩模块加入深度卷积神经网络中替换由传统卷积和池化组成的特征提取层;叠加多个残差收缩模块得到深度残差收缩网络模型;将构建的DRSN用于噪声环境下的轴承故障诊断试验。结果表明:TM-DRSN方法的故障诊断精度优于其他对比方法。  相似文献   

3.
针对传统滚动轴承诊断方法在强噪声干扰下正确率低、特征选取依赖经验、模型泛化能力差的局限性,提出一种基于降噪多分支卷积神经网络(convolution neural network, CNN)和注意力机制的滚动轴承故障端到端诊断方法。通过设计多分支CNN特征提取网络,实现了包含原始信号及其频谱、时域滤波信号在内的多域特征提取;进一步引入注意力机制对各分支的输出进行权重自适应分配,在增强各域有效特征的同时抑制其无效特征对诊断结果的影响,提升模型的鲁棒性和泛化能力;最后再利用基于全局平均池化层构造的分类CNN实现滚动轴承故障的端到端诊断。对比试验证明,所设计的模型能在强噪声干扰下实现更准确的轴承故障诊断。  相似文献   

4.
为解决轴承故障诊断中故障分类模型参数多且泛化性能弱、故障识别率低、识别速度慢的问题,设计一种基于深度学习模型ECA-ResNet、完全噪声辅助聚合经验模态分解与麻雀搜索算法优化的支持向量机(SSA-SVM)的故障诊断方法。通过ECA-ResNet对轴承信号进行建模以提取频域故障特征;将频域特征与CEEMDAN提取的能量熵以及传统信号的时域特征共同构成特征矩阵;通过SSA-SVM进行故障类型识别。结果表明:与传统故障特征提取方式相比,所提出的轴承故障诊断方法能得到良好的诊断效果,轴承故障识别率和分类速度较高。  相似文献   

5.
针对传统轴承故障诊断方法过度依赖专家经验和故障特征提取困难的问题,提出了一种基于同步挤压S变换(synchrosqueezed S transform,SSST)和深度曲线波卷积神经网络(deep curvelet convolutional neural network,DCCNN)的轴承故障诊断方法。首先,对采集到的轴承振动信号进行SSST变换,得到时频图像并进行灰度化和归一化操作;其次,在深度卷积神经网络基础上建立DCCNN,并引入类内距离和类间距离约束的能量函数;最后,将时频图像直接输入DCCNN进行自动特征提取和故障识别。轴承诊断实验结果表明,该方法能有效地对轴承进行多工况和多种故障程度的识别,特征提取能力和识别能力优于人工神经网络、深度信念网络、深度自编码器和标准卷积神经网络等方法。  相似文献   

6.
作为石化机组的重要组成部分,轴承发生故障将导致机械运转故障进而影响企业经济效益,故而研究石化机组轴承故障预测、故障诊断具有重大意义。介绍故障诊断中早期基于信号处理的轴承故障诊断方法,阐述应用广泛的深度学习(包括卷积神经网络、迁移学习)等模型在石化机组轴承故障诊断中的应用,并展望基于人工智能的石化机组轴承故障诊断应用。  相似文献   

7.
针对滚动轴承故障诊断中单一传感器信息的不全面性、单一网络模型的不确定性,提出了基于多深度学习模型决策融合的滚动轴承故障诊断方法。首先,利用深度卷积网络(CNN)和层叠降噪自动编码器(SDAE)分别对两个振动传感器信号进行自适应特征提取,经softmax初步分类。接着将两个网络的输出结果利用D-S证据理论进行融合,得到最终诊断结果。实验结果表明,利用该方法对滚动轴承进行故障诊断正确率达到95.63%,相比CNN正确率提高了5.49%,相比SDAE正确率提高了10.42%,验证了该方法的有效性。  相似文献   

8.
基于非欧几里德空间的数据包含着数据点以及数据点之间的关系信息,而基于深度学习模型的故障诊断方法通常忽略了数据点之间的关系信息。对此,通过结合可视图算法和图卷积网络,将基于非欧几里德空间的不规则数据应用到轴承故障诊断领域。首先,将原始信号利用可视图算法转换为图数据,以图数据显示时域特征,极大丰富了输入信息;其次,利用构建的图卷积网络对故障特征进行学习,以达到故障诊断的目的。实验结果表明,图卷积网络在单一轴承故障分类任务上能够达到97%以上的准确率,这表明利用可视图算法提取的关系信息对轴承故障的识别具有重要作用。  相似文献   

9.
杜康宁  宁少慧 《机床与液压》2023,51(15):209-215
针对实际工况下,正常样本丰富、故障样本稀缺的类别不平衡情形,导致基于深度学习的故障诊断模型诊断能力较差这一问题,提出一种基于自适应综合采样方法(ADASYN)和Swin Transformer的故障诊断模型。使用自适应综合采样方法,改善数据分布,解决实际工况中故障样本与正常样本类别不平衡问题;使用Swin Transformer网络模型代替CNN网络 ,并使用深度迁移学习方法,使Swin Transformer网络模型掌握判别滚动轴承故障所需的浅层权重,深层权重通过反向传播方法训练获得;之后,将模型用于轴承故障测试,并对其进行调试;最后,将模型用于轴承故障实测,检验其实际工况下的诊断能力。实验结果表明:所提模型具有97%的诊断准确率,能够很好地适用于类别不平衡情形下的滚动轴承故障诊断。  相似文献   

10.
针对轴承在数控车间生产中易发生故障且对轴承故障预警困难的问题,提出了一种基于XGBoost算法和AR(I)MA自回归模型的数据驱动的故障诊断和预警方法。首先使用XGBoost算法将轴承的历史数据划分为正常、滚珠故障、外圈故障和内圈故障4种状态,然后使用AR(I)MA模型来预测轴承在未来一段时间内的振动信号变化,再将预测出的振动信号进行降噪和特征提取后输入到训练好的XGBoost中进行故障诊断。使用PRONOSTIA平台采集的轴承工作数据进行实验,结果表明,文章方法可以准确预测出轴承短期内的振动信号并诊断出可能发生的故障,证明了该方法在轴承的故障诊断和预警中的可行性与正确性。  相似文献   

11.
针对目前已有的电机轴承故障诊断算法对于人工干预和专家经验的依赖,以及故障诊断工作的复杂度逐渐的提高。文章提出了基于深度学习中卷积神经网络的故障诊断算法,使用原始振动数据作为网络模型的输入对其进行训练以发挥其强大的自学习能力。根据振动数据的特点和实验对比选择模型的结构和参数,进而通过深层次网络结构的卷积操作以实现对原始振动数据的特征提取,最终在输出端利用Softmax分类器输出分类结果。通过实验验证表明,该方法对于轴承故障分类准确率能够达到99.8%,对比其他方法具有很好的分类效果。  相似文献   

12.
基于轴承维修保障的实际需求,以精确预测轴承剩余使用寿命(RUL)为目标,提出了一种深度学习网络框架,即DA-BLSTM。首先,提取了与轴承性能退化密切相关的15种时域和频域特征;然后,引入注意力机制并与双向长短期记忆网络(BLSTM)深度融合,设计了DA-BLSTM,其中输入注意力机制能够自适应地选取相关时域和频域特征,方向注意力机制用于分配BLSTM不同时间方向(前向、后向)隐藏状态的权重,得到精确的RUL预测结果。在PRONOSTIA平台的滚动轴承数据上进行实验验证,比较实验结果表明基于DA-BLSTM的预测方法具有更高的精度。  相似文献   

13.
针对传统的滚动轴承故障诊断方法难以提取轴承振动数据有效特征的缺陷,提出一种基于平滑伪Wigner-Vill分布(smooth and pseudo Wigner-Ville distribution,SPWVD)和卷积神经网络(convolutional neural network,CNN)的网络模型SPWVD-CNN。对振动数据进行平滑伪Wigner-Vill分布变换,将获得的时频图进行压缩,作为CNN的输入,利用迁移学习的思想进行网络训练,使得模型对于不同负载的数据具有良好的诊断性能,提高了网络的泛化能力。实验结果表明:SPWVD-CNN对轴承故障数据的平均分类准确率提升至99. 27%,总体性能优于使用单一的CNN和其他传统的故障诊断方法。  相似文献   

14.
陈维兴  孙习习  王涛 《机床与液压》2020,48(12):147-154
针对传统的滚动轴承故障诊断方法难以提取轴承振动数据有效特征的缺陷,提出一种基于平滑伪Wigner-Vill分布(smooth and pseudo Wigner-Ville distribution,SPWVD)和卷积神经网络(convolutional neural network,CNN)的网络模型SPWVD-CNN。对振动数据进行平滑伪Wigner-Vill分布变换,将获得的时频图进行压缩,作为CNN的输入,利用迁移学习的思想进行网络训练,使得模型对于不同负载的数据具有良好的诊断性能,提高了网络的泛化能力。实验结果表明:SPWVD-CNN对轴承故障数据的平均分类准确率提升至99.27%,总体性能优于使用单一的CNN和其他传统的故障诊断方法。  相似文献   

15.
针对传统深度学习方法在滚动轴承故障诊断中分类准确度相对较低的问题,提出了一种基于深度卷积模型(DCNN)和支持向量机(SVM)相结合的诊断模型。利用深度卷积模型对滚动轴承故障信号进行自适应特征提取,再将提取的特征输入到支持向量机中进行模式识别。使用经典深度卷积、BP神经网络和支持向量机三种模型进行了5组对比实验,并对自适应提取的特征与人工特征进行了PCA主成分分析。结果表明,利用该方法对滚动轴承内圈点蚀、滚珠点蚀和外圈点蚀等10类故障进行实验诊断,准确率达到99.25%,提高了故障诊断准确率。  相似文献   

16.
针对传统的机器学习算法在应对工业系统中样本不均衡现象时难以获得较高的异常检测性能的问题,提出一种基于深度动态密度估计的轴承信号异常检测方法(DCEN)。首先,训练该压缩网络时只需要从正常样本中提取特征,得到原始数据的低维表示;接着将其进一步输入到高斯混合模型(GMM)中,对正常数据进行动态密度估计;然后,利用估计网络来促进模型的参数学习,以端到端的方式多次迭代同时优化深度自动编码器和混合模型的参数;最后,采用高斯混合模型的预测能量值作为异常分数,模型在没有学习异常样本分布的情况下将故障样本输入到本文模型中产生更高的异常分数来检测异常。通过在3个不同轴承数据集上的实验和对比分析,验证了该方法的有效性和优越性。  相似文献   

17.
传统滚动轴承工况识别方法需要对采集到的轴承振动信号进行人工特征提取,提出一种基于自适应经验小波分解(adaptive empirical wavelet decomposition, AEWD)和深层Wasserstein网络(deep Wasserstein network, DWN)的工况识别方法。首先,改进经验小波分解频谱的分割方法,进而将滚动轴承振动信号自适应分解为本征模态分量;其次,筛选出最能反映轴承运行工况特征的分量并进行信号重构;最后,构造深层Wasserstein网络,将重构后的轴承振动信号输入DWN进行自动特征提取与工况识别。实验结果表明:AEWD结合DWN方法相比于其它深度学习方法在工况识别准确率方面更具优势。  相似文献   

18.
针对齿轮箱故障诊断需要大量专家经验知识、人工提取特征困难的问题,提出基于特征差异性学习卷积神经网络(FDLCNN)的故障诊断方法。构建不同深度的多尺度网络,并引入残差模块,以提升网络的特征提取能力;提取一维时序信号中不同尺度不同深度的故障特征,再通过自适应平均池化层处理后进行特征融合,以丰富智能诊断决策信息;最后在全连接层实现特征降维,使用Softmax分类器输出诊断结果。利用10种齿轮箱故障状态实验数据与现有3种方法进行对比分析,结果表明:FDLCNN故障识别精度更高,鲁棒性更强,收敛速度更快。  相似文献   

19.
为了解决传统深度学习方法无法挖掘原始振动数据与旋转机械状态之间的非线性映射关系问题,提出了一种基于堆叠式自动编码器与深度Q网络相结合的深度强化学习旋转机械故障诊断方法。首先,建立故障诊断"博弈"模型从而为故障诊断代理提供观察、行动和获得奖励的交互式环境;其次,堆叠式自动编码器采用完全连接模型进行逐级的内在特征学习进一步构建了故障诊断代理,然后通过引入记忆回放和迭代更新策略以及奖励反馈机制,使得深度Q网络实现了原始振动信号与故障模式之间的非线性映射关系。实验结果显示提出的方法在滚动轴承以及液压泵故障诊断上具备较高的诊断精度,验证了该方法能够有效地实现了旋转机械端到端的故障诊断。  相似文献   

20.
杨锡运  吕微  王灿  李韶武 《机床与液压》2021,49(17):179-184
针对风力发电机组的发电机轴承故障诊断问题,提出基于滑动窗口-KL散度和改进堆叠自编码的深度学习网络故障诊断模型。采用改进的变学习速率的堆叠自编码器进行发电机轴承温度状态重构。利用滑动窗口-KL散度算法进行发电机轴承的故障诊断,诊断结果与欧氏距离和3σ准则故障诊断结果进行对比。结果表明:采用滑动窗口-KL散度算法进行故障诊断准确率高、误报率低。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号