首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
煤层倾角是影响区段煤柱稳定性的关键因素之一.利用理论分析、相似模拟、数值模拟等方法研究了倾斜煤层开挖后倾向覆岩结构演化特征、煤柱变形及失稳破坏形式.研究结果表明,0~45°范围内随着煤层倾角增大,区段煤柱发生剪切失稳破坏的可能性增大;煤柱两侧覆岩结构呈现不对称分布,煤柱上侧砌体梁结构形成层位较低,煤柱下侧形成冒空区,砌体梁结构形成层位高于上侧;与水平煤层煤柱破坏以挤压变形为主不同,倾斜煤柱以沿着弱面剪切滑移破坏为主;不同倾角煤层煤柱围岩变形量呈不对称分布,煤柱下侧围岩变形量大于上侧,煤层倾角越大煤柱围岩变形量不对称分布趋势越明显.  相似文献   

2.
Effective surrounding rock control is a prerequisite for realizing safe mining in underground coal mines.In the past three decades, longwall top-coal caving mining(LTCC) and single pass large height longwall mining(SPLL) found expanded usage in extracting thick coal seams in China. The two mining methods lead to large void space left behind the working face, which increases the difficulty in ground control.Longwall face failure is a common problem in both LTCC and SPLL mining. Such failure is conventionally attributed to low strength and high fracture intensity of the coal seam. However, the stiffness of main components included in the surrounding rock system also greatly influences longwall face stability.Correspondingly, surrounding rock system is developed for LTCC and SPLL faces in this paper. The conditions for simultaneous balance of roof structure and longwall face are put forward by taking the stiffness of coal seam, roof strata and hydraulic support into account. The safety factor of the longwall face is defined as the ratio between the ultimate bearing capacity and actual load imposed on the coal wall.The influences provided by coal strength, coal stiffness, roof stiffness, and hydraulic support stiffness,as well as the movement of roof structure are analyzed. Finally, the key elements dominating longwall face stability are identified for improving surrounding rock control effectiveness in LTCC and SPLL faces.  相似文献   

3.
In allusion to the problems of complex stress distribution in the surrounding rock and deformation failure laws, as well as the difficulty in roadway supporting of the gob-side entry driving in the island coal face, 2107 face in Chengjiao Colliery is researched as an engineering case. Through physical mechanical test of rock, theoretical and numerical simulation analyses of rock, the analysis model of the roadway overlying strata structure was established, and its parameters quantified. To reveal the deformation law of the surrounding rock, the stability of the overlying strata structure was studied before, during and after the roadway driving. According to the field conditions, the stress distribution in coal pillar was quantified, and the surrounding rock deformation feature studied with different widths of the pillars in gob-side entry driving. Finally, the pillar width of 4 m was considered as the most reasonable. The research results show that there is great difference in support conditions among roadway roof, entity coal side and narrow pillar side. Besides, the asymmetric control technique for support of the surrounding rock was proposed. The asymmetric control technique was proved to be reasonable by field monitoring, support by bolt-net, steel ladder and steel wire truss used in narrow pillar side.  相似文献   

4.
This paper seeks to enhance the understanding that the horizontal stresses build up and release during coal pillar loading and unloading(post-failure) drawing upon three decades of observations, geomechanical monitoring and numerical modeling in bump-prone U.S. mines. The focus is on induced horizontal stress in mine pillars and surrounding strata as highly stressed pillars punch into the roof and floor, causing shear failure and buckling of strata; under stiff stratigraphic units of some western US mines, these events could be accompanied by violent failure of pillar cores. Pillar punching eventually results in tensile stresses at the base of the pillar, facilitating transition into the post-failure regime; this transition will be nonviolent if certain conditions are met, notably the presence of interbedded mudstones with low shear strength properties and proper mine designs for controlling seismicity and dynamic loads. The study clearly shows high confining stress build-up in coal pillars resulting in up to twice higher peak vertical stress and high strain energy accumulations in some western US mines in comparison with peak stresses predicted using common empirical pillar design methods. It is the unstable release of this strain energy that can cause significant damage resulting from pillar dilation and ground movements. These forces are much greater than the capacity of most common internal support systems, resulting in horizontal stressinduced roof falls locally, in mines under unremarkable far-field horizontal stress. Attention should be placed on pillar designs as increasing support density may prove to be ineffective. This mechanism is analyzed using field measurements and generic finite-difference stress analyses. The study confirms the higher load carrying capacity of confinement-controlled coal seams in comparison with structurally controlled coal seams. Such significant differences in confining stresses are not taken into account when estimating peak pillar strength using most common empirical techniques such as those proposed by Bieniawski and Salamon. While using lower pillar strength estimates may be considered conservative,it underestimates the actual capacity of pillars in accumulating much higher stress and strain energies,misleading the designer and inadvertently diminishing mine safety. The role of induced horizontal stress in mine pillars and surrounding strata is emphasized in coal pillar mechanics of violent failure. The triggering mechanism for the violent events is sudden loss of pillar confinement due to dynamic loading resulting from failure of overlying stiff and strong strata. Evidence of such mechanism is noted in the field by observed red-dust at the coal-rock interfaces at the location of coal bumps and irregular, periodic caving in room-and-pillar mines quantified through direct pressure measurements in the gob.  相似文献   

5.
In the practice of mining shallow buried ultra-close seams, support failure tends to occur during the process of longwall undermining beneath two layers of room mining goaf (TLRMG). In this paper, the factors causing support failure are summarized into geology and mining technology. Combining column lithology and composite beam theory, the key stratum of the rock strata is determined. A finite element numerical simulation is used to analyze the overlying load distribution rule of the main roof for different plane positions of the upper and lower room mining pillars. The tributary area theory (TAT) is adopted to analyze the vertical load distribution of each pillar, and dynamic models of coal pillar instability and main roof fracture are established. Through key block instability analysis, two critical moments are established, of which critical moment A has the greater dynamic load strength. Great economic losses and safety hazards are created by the dynamic load of the fracturing of the main roof. To reduce these negative effects, a method of pulling out supports is developed and two alternative measures for support failure prevention are proposed: reinforcing stope supports in conjunction with reducing mining height, or drilling ground holes to pre-split the main roof. Based on a comprehensive consideration of economic factors and the two categories of support failure causes, the method of reinforcing stope supports while reducing mining height was selected for use on the mining site.  相似文献   

6.
In order to ensure safe mining and reduce surface damage in shallow multi-seam mining, the failure characteristics of interburden strata with different coal pillars offset distances between pillars in the upper and lower seams, the distribution characteristics of stress concentration in coal pillars, and the development characteristics of stratum cracks and subsidence were investigated by physical and UDEC2 D simulation. Meanwhile, the effect of different coal pillar offset distances on stress concentration of coal pillar and development of stratum cracks were studied. Based on those results, a formula for safe mining and reducing surface damage was established, which provided a theoretical basis for safe and environmentally friendly mining in shallow multi-seam. According to the results, the optimal coal pillar offset distance(the side to side horizontal distance of the upper and lower coal pillars) between the upper and lower coal seams was developed to reduce the stress concentration of coal pillars and surface damage.The results of this study have been applied in Ningtiaota coal mine and have achieved good results in safe and environmentally friendly mining.  相似文献   

7.
正确确定煤系岩体力学参数的概率分布是承压水上采煤底板稳定可靠性分析的关键。以淮北矿区部分煤矿下组煤底板砂岩强度参数为例,以K-S检验法对数据进行概率分布拟合,获取参数分布类型及统计量。以此大样本概型为先验函数,具体工作面底板岩体小样本参数的概型为似然函数,基于Bayes方法对其优化,得到验后分布的概型参数。计算结果表明,下组煤底板砂岩强度参数全部接受正态分布和对数正态分布,优化后的方差有所下降,可以提高底板采动稳定可靠性分析结果,从而达到优化目的。  相似文献   

8.
The study analyzes the characteristics of roof movement in mining top coal of inclined coal seam, and establishes the mechanical model of support and surrounding-rock stability in inclined coal seam. Besides, this study carries out the numerical calculation and field observation of roof movement and support stability, and provides the critical control measures. The results show that the fracture firstly appears in middle-upper roof and extends upwards in top coal caving in inclined coal seam; regular and irregular caving zones appear in middle-upper stress concentration region, and the asymmetric caving arch is finally formed. Support load of middle-upper working face is larger than that of the middle-lower face; dynamic load coefficient of upper support is large, and the load on the front of support is larger than that on the rear of it, which leads to poor support stability. Stability of support and surrounding-rock system depends mainly on upper-support stability.  相似文献   

9.
Concerning the issue of mine pressure behaviors occurred in fully mechanized caving mining of thick coal seams beneath hard stratum in Datong Mining Area, combined with thin and thick plate theory, the paper utilizes theoretical analysis, similar experiments, numerical simulations and field tests to study the influence of remaining coal pillars in Jurassic system goaf on hard stratum fractures, as well as mine pressure behaviors under their coupling effects. The paper concludes the solution formula of initial fault displacement in hard stratum caused by remaining coal pillars. Experiments prove that coupling effects can enhance mine pressure behaviors on working faces. When inter-layer inferior key strata fractures, mine pressure phenomenon such as significant roof weighting steps and increasing resistance in support.When inter-layer superior key strata fractures, the scope of overlying strata extends to Jurassic system goaf, dual-system stopes cut through, and remaining coal pillars lose stability. As a result, the bottom inferior key strata also lose stability. It causes huge impacts on working face, and the second mine pressure behaviors. These phenomena provide evidence for research on other similar mine strata pressure behaviors occurred in dual-system mines with remaining coal pillars.  相似文献   

10.
Explaining fundamentals of application of cable bolting for a thick seam depillaring,this paper summarizes the results of field studies conducted during adoption of this approach in more than fifteen panels of Madhusudanpur 7 pit and incline mine.Nearly 7.0 m thick Kajora top coal seam of this mine is developed on pillars along the floor horizon to an average height of 3.0 m,leaving a coal band of around 4.0 m along the roof.Analysis of procured core samples showed that roof strata are easily caveable with a caveability index value of around 2000 only.Easily caveable overlying strata and shallow depth of cover alleviated most of the expected strata mechanics problems of the thick seam mining.However,extraction of total thickness at shallow cover caused differential-subsidence and cracks on the surface.These manifestations were immediately tackled to avoid creation of a breathing path for spontaneous heating in the extracted area.  相似文献   

11.
厚煤层存在夹矸层是较为普遍的现象,而夹矸层对顶煤冒放性的影响则是研究顶煤冒放性问题的一个重要方面。今根据煤层中夹矸层赋存特征(层位、层数、厚度)和岩石力学性质(岩性、强度),详细分析了夹矸特性对顶煤冒放性的影响。在此基础上,结合放顶煤开采的要求,提出了夹矸层的临界厚度参数值范围。  相似文献   

12.
The National Institute for Occupational Safety and Health(NIOSH) conducted a comprehensive monitoring program in a room-and-pillar mine located in Southern Virginia. The deformation and the stress change in an instrumented pillar were monitored during the progress of pillar retreat mining at two sites of different geological conditions and depths of cover. The main objectives of the monitoring program were to better understand the stress transfer and load shedding on coal pillars and to quantify the rib deformation due to pillar retreat mining; and to examine the effect of rib geology and overburden depth on coal rib performance. The instrumentation at both sites included pull-out tests to measure the anchorage capacity of rib bolts, load cells mounted on rib bolts to monitor the induced loads in the bolts, borehole pressure cells(BPCs) installed at various depths in the study pillar to measure the change in vertical pressure within the pillar, and roof and rib extensometers installed to quantify the vertical displacement of the roof and the horizontal displacement of the rib that would occur during the retreat mining process.The outcome from the monitoring program provides insight into coal pillar rib support optimization at various depths and geological conditions. Also, this study contributes to the NIOSH rib support database in U.S coal mines and provides essential data for rib support design.  相似文献   

13.
煤层开采过程中,在煤层顶、底板岩层一定的条件下,煤层的倾角和埋深对地表变形有很大的影响。通过三维有限元数值模拟,研究平缓或缓倾斜煤层、倾斜煤层、急倾斜煤层开采对上覆构筑物基础变形的影响,依据特定构筑物对倾斜变形、水平变形和基础沉降最大值的容许要求,提出安全煤柱(移动角γ、β)的保护范围,为构筑物安全运行和煤矿合理开采提供依据。  相似文献   

14.
Irregular shape workface would result in the presence of coal pillar, which leads to high stress concentration and possibly induces coal bumps. In order to study the coal bump mechanism of pillars, static and dynamic stress overlapping(SDSO) method was proposed to explain the impacts of static stress concentration and tremors induced by mining activities. The stress and deformation in surrounding rock of mining face were analyzed based on the field case study at 1303 workface in Zhaolou Coal Mine in China.The results illustrate that the surrounding rock of a workface could be divided into four different zones,i.e., residual stress zone, stress decrease zone, stress increase zone and original stress zone. The stress increase zone is prone to failure under the SDSO impact loading conditions and will provide elastic energy for inducing coal bump. Based on the numerical modelling results, the evolution of static stress in coal pillar as the size of gob increasing was studied, and the impact of dynamic stress was investigated through analyzing the characteristics of tremor activities. The numerical results demonstrate the peak value of vertical stress in coal pillar rises from about 30 MPa with mining distance 10 m to 52.6 MPa with mining distance 120 m, and the location of peak stress transfers to the inner zone of coal pillars as the workface moves forward. For the daily tremor activities, tremors with high energy released indicate high dynamic stress disturbance on the surrounding rock, therefore, the impact of dynamic stressing is more serious during workface extension period because the tremor frequency and average energy after workface extension are higher than those before the workface extension.  相似文献   

15.
Current coal pillar design is the epitome of suspension design.A defined weight of unstable overburden material is estimated, and the dimensions of the pillars left behind are based on holding up that material to a prescribed factor of safety.In principle, this is no different to early roadway roof support design.However, for the most part, roadway roof stabilisation has progressed to reinforcement, whereby the roof strata is assisted in supporting itself.This is now the mainstay of efficient and effective underground coal production.Suspension and reinforcement are fundamentally different in roadway roof stabilisation and lead to substantially different requirements in terms of support hardware characteristics and their application.In suspension, the primary focus is the total load-bearing capacity of the installed support and ensuring that it is securely anchored outside of the unstable roof mass.In contrast, reinforcement recognises that roof de-stabilisation is a gradational process with ever-increasing roof displacement magnitude leading to ever-reducing stability.Key roof support characteristics relate to such issues as system stiffness, the location and pattern of support elements and mobilising a defined thickness of the immediate roof to create(or build) a stabilising strata beam.The objective is to ensure that horizontal stress is maintained at a level that prevents mass roof collapse.This paper presents a prototype coal pillar and overburden system representation where reinforcement, rather than suspension, of the overburden is the stabilising mechanism via the action of in situ horizontal stresses.Established roadway roof reinforcement principles can potentially be applied to coal pillar design under this representation.The merit of this is evaluated according to failed pillar cases as found in a series of published databases.Based on the findings, a series of coal pillar system design considerations for bord and pillar type mine workings are provided.This potentially allows a more flexible approach to coal pillar sizing within workable mining layouts, as compared to common industry practice of a single design factor of safety(Fo S) under defined overburden dead-loading to the exclusion of other relevant overburden stabilising influences.  相似文献   

16.
In the Kaiping Coal field, mining of five coal seams, located within 80 m in the Kailuan Group, #5, #7, #8,#9 and #12 coal seam, is difficult due to small interburden thickness, concentrated stress distributions,high coal seam metamorphism, and complex geological conditions. By using the ZTR12 geological penetration radar(GPR) survey combined with borehole observations, the overburden caving due to mining of the five coals seams was measured. The development characteristics of full-cover rock fractures after mining were obtained from the GPR scan, which provides a measurement basis for the control of rock strata in close multiple coal seam mining. For the first time, it was found that the overburden caving pattern shows a periodic triangular caved characteristic. Furthermore, it is proposed that an upright triangular collapsed pile masonry and an inverted triangular with larger fragments piled up alternately appear in the lower gob. The research results show that the roof structure formed in the gob area can support the key overlying strata, which is beneficial to ensure the integrity and stability of the upper coal seams in multiple-seam mining of close coal seams.  相似文献   

17.
Automatically formed roadway(AFR) by roof cutting with bolt grouting(RCBG) is a new deep coal mining technology. By using this technology, the broken roadway roof is strengthened, and roof cutting is applied to cut off stress transfer between the roadway and gob to ensure the collapse of the overlying strata. The roadway is automatically formed owing to the broken expansion characteristics of the collapsed strata and mining pressure. Taking the Suncun Coal Mine as the engineering background, the control effect of this new technology on roadways was studied. To compare the law of stress evolution and the surrounding rock control mechanisms between AFR and traditional gob-side entry driving, a comparative study of geomechanical model tests on the above methods was carried out. The results showed that the new technology of AFR by RCBG effectively reduced the stress concentration of the roadway compared with gob-side entry driving. The side abutment pressure peak of the solid coal side was reduced by 24.3%, which showed an obvious pressure-releasing effect. Moreover, the position of the side abutment pressure peak was far from the solid coal side, making it more beneficial for roadway stability. The deformation of AFR surrounding rock was also smaller than the deformation of the gob-side entry driving by the overload test. The former was more beneficial for roadway stability than the latter under higher stress conditions. Field application tests showed that the new technology can effectively control roadway deformation. Moreover, the technology reduced roadway excavation and avoided resource waste caused by reserved coal pillars.  相似文献   

18.
To improve the effectiveness of control of surrounding rock and the stability of supports on longwall topcoal caving faces in steeply inclined coal seams, the stability of the roof structure and hydraulic supports was studied with physical simulation and theoretical analysis. The results show that roof strata in the vicinity of the tail gate subside extensively with small cutting height, while roof subsidence near the main gate is relatively assuasive. With increase of the mining space, the caving angle of the roof strata above the main gate increases. The characteristics of the vertical and horizontal displacement of the roof strata demonstrate that caved blocks rotate around the lower hinged point of the roof structure, which may lead to sliding instability. Large dip angle of the coal seam makes sliding instability of the roof structure easier.A three-hinged arch can be easily formed above both the tail and main gates in steeply inclined coal seams. With the growth in the dip angle, subsidence of the arch foot formed above the main gate decreases significantly, which reduces the probability of the roof structure becoming unstable as a result of large deformation, while the potential of the roof structure's sliding instability above the tail gate increases dramatically.  相似文献   

19.
This paper attempts to quantify the effect of backfilling on pillar strength in highwall mining using numerical modelling. Calibration against the new empirical strength formula for highwall mining was conducted to obtain the material parameters used in the numerical modelling. With the obtained coal strength parameters, three sets of backfill properties were investigated. The results reveal that the behavior of pillars varies with the type and amount of backfill as well as the pillar width to mining height ratio(w/h). In case of cohesive backfill, generally 75% backfill shows a significant increase in peak strength, and the increase in peak strength is more pronounced for the pillars having lower w/h ratios. In case of noncohesive backfill, the changes in both the peak and residual strengths with up to 92% backfill are negligible while the residual strength constantly increases after reaching the peak strength only when 100%backfill is placed. Based on the modelling results, different backfilling strategies should be considered on a case by case basis depending on the type of backfill available and desired pillar dimension.  相似文献   

20.
Based on the character of upward slicing backfilling mining and the condition of Gonggeyingzi coal mine in Inner Mongolia,this paper describes the studies of the strata behavior and the stress distribution in the process of backfilling mining in extra-thick coal seams.This was achieved by setting up and analyzing the elastic foundation beam model using the ABAQUS software.The results show that:(1) With the gradual mining of different slices,the roof appears to bend continuously but does not break.The vertical stress in the roof decreases and the decreasing amplitude reduces,while the tensile stress in the roof grows with the mining slices and the maximum tensile stress will not exceed the allowable tensile stress.(2) The front vertical stress at the working face exceeds the rear vertical stress and both show a trend of decrease with decreasing amplitude of decrease.(3) The slices mined early have more influence on the surrounding rock than the later ones.Similarly,the strata behavior experiences the same trend.The field measured data show that the roof does not break during the mining process,which is consistent with the conclusion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号