首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The objective of this investigation was to determine whether hydroquinone (HQ) can form clathrate compounds with two sulfides (hydrogen sulfide (H2S) and carbonyl sulfide (COS)) at their diluted concentrations. Hydroquinone samples obtained at ambient temperature and at two pressures (40 and 80 bar) for binary gas mixtures consisting of H2S-N2 and COS-N2, were analyzed using solid-state 13C NMR and Raman spectroscopy. An elemental analyzer was also used to obtain quantitative information regarding the kind and amount of gas captured in the solid samples. Results show that H2S can be concentrated within the solid clathrate from H2S-containing gas, while COS is little captured after reaction with the COS-containing gas. This suggests that the HQ clathrate can be used to remove H2S, and that selective separation can be achieved when two sulfides of H2S and COS coexist. On the basis of the calculated cage occupancies of the gas components in the solid clathrate, the enclathration preference of the gas components used in this research was found to be the order of H2S>N2>COS.  相似文献   

2.
A chemical method for determination of the charge state of chromium in B2O3-based materials (Bi12SiO20 and Bi12TiO20 single crystals) in a wide Cr concentration range (1 × 10–5 – 2 × 10–2 wt.%)is proposed. The method is based on a color reaction between Cr6+ and diphenylcarbazide in an acid medium.Translated from Novye Ogneupory, No. 8, pp. 61 – 63, August, 2004.  相似文献   

3.
Nanoporous silica membrane without any pinholes and cracks was synthesized by organic templating method. The tetrapropylammoniumbromide (TPABr)-templating silica sols were coated on tubular alumina composite support ( γ-Al2O3/ α-Al2O3 composite) by dip coating and then heat-treated at 550 °C. By using the prepared TPABr templating silica/alumina composite membrane, adsorption and membrane transport experiments were performed on the CO2/N2, CO2/H2 and CH4/H2 systems. Adsorption and permeation by using single gas and binary mixtures were measured in order to examine the transport mechanism in the membrane. In the single gas systems, adsorption characteristics on the α-Al2O3 support and nanoporous unsupport (TPABr templating SiO2/ γ-Al2O3 composite layer without α-Al2O3 support) were investigated at 20–40 °C conditions and 0.0–1.0 atm pressure range. The experimental adsorption equilibrium was well fitted with Langmuir or/and Langmuir-Freundlich isotherm models. The α-Al2O3 support had a little adsorption capacity compared to the unsupport which had relatively larger adsorption capacity for CO2 and CH4. While the adsorption rates in the unsupport showed in the order of H2> CO2> N2> CH4 at low pressure range, the permeate flux in the membrane was in the order of H2≫N2> CH4> CO2. Separation properties of the unsupport could be confirmed by the separation experiments of adsorbable/non-adsorbable mixed gases, such as CO2/H2 and CH4/H2 systems. Although light and non-adsorbable molecules, such as H2, showed the highest permeation in the single gas permeate experiments, heavier and strongly adsorbable molecules, such as CO2 and CH4, showed a higher separation factor (CO2/H2=5-7, CH4/H2=4-9). These results might be caused by the surface diffusion or/and blocking effects of adsorbed molecules in the unsupport. And these results could be explained by surface diffusion. This paper is dedicated to Professor Hyun-Ku Rhee on the occasion of his retirement from Seoul National University.  相似文献   

4.
We demonstrate the spectroscopic observation of H2 migration in the binary structure-I (sI) clathrate hydrate. The H2 molecules captured into sI small cage (sI-S) at lower temperature migrate to sI large cage (sI-L) through shared pentagonal face of 51262 cage. The hexagonal faces of 51262 cage provide the windows essential for creating continuous diffusion paths for H2 molecules. It is essential to realize that the vacant channels formed by the linkage of specific cages can play an important role in guest diffusion pathways and occupancy occurring in a complex clathrate hydrate matrix.  相似文献   

5.
The 0D-1D Lithium titanate (Li4Ti5O12) heterogeneous nanostructures were synthesized through the solvothermal reaction using lithium hydroxide monohydrate (Li(OH)·H2O) and protonated trititanate (H2Ti3O7) nanowires as the templates in an ethanol/water mixed solvent with subsequent heat treatment. A scanning electron microscope (SEM) and a high resolution transmission electron microscope (HRTEM) were used to reveal that the Li4Ti5O12 powders had 0D-1D heterogeneous nanostructures with nanoparticles (0D) on the surface of wires (1D). The composition of the mixed solvents and the volume ratio of ethanol modulated the primary particle size of the Li4Ti5O12 nanoparticles. The Li4Ti5O12 heterogeneous nanostructures exhibited good capacity retention of 125 mAh/g after 500 cycles at 1C and a superior high-rate performance of 114 mAh/g at 20C.  相似文献   

6.
The catalytic oxidation of hydrogen sulfide (H2S) to elemental sulfur was studied over CeO2-TiO2 catalysts. The synthesized catalysts were characterized by various techniques such as X-ray diffraction, BET, X-ray photoelectron spectroscopy (XPS), temperature-programmed desorption of ammonia, and scanning electron microscopy (SEM). Catalytic performance studies of the CeO2-TiO2 catalysts showed that H2S was successfully converted to elemental sulfur without considerable emission of sulfur dioxide. CeO2-TiO2 catalysts with Ce/Ti=1/5 and 1/3 exhibited the highest H2S conversion, possibly due to the uniform dispersion of metal oxides, high surface area, and high amount of acid sites.  相似文献   

7.
The chemical and thermal structure of a Mache-Hebra burner stabilized premixed rich CH4/O2/N2 flame with additives of vapors of triphenylphosphine oxide [(C6H5)3PO], hexabromocyclododecane (C12H18Br6), and ethyl bromide (C2H5Br) was studied experimentally using molecular beam mass spectrometry (MBMS) and a microthermocouple method. The concentration profiles of stable and active species, including atoms and free radicals, and flame temperature pro.les were determined at a pressure of 1 atm. A comparison of the experimental and modeling results on the flame structure shows that MBMS is a suitable method for studying the structure of flames stabilized on a Mache-Hebra burner under near-adiabatic conditions. The relative flame inhibition effectiveness of the added compounds is estimated from changes in the peak concentrations of H and OH radicals in the flame and from changes in the flame propagation velocity. The results of the investigation suggest that place of action of the examined flame retardants is the gas phase. __________ Translated from Fizika Goreniya i Vzryva, Vol. 43, No. 5, pp. 12–20, September–October, 2007.  相似文献   

8.
Methods for regenerating H3PW12O40 catalyst in the solvent-free direct preparation of dichloropropanol (DCP) from glycerol and hydrochloric acid gas were investigated. Regenerated H3PW12O40 catalyst was then applied to the solvent-free direct preparation of DCP. In the solvent-free direct preparation of DCP, selectivity for DCP over H3PW12O40 catalyst regenerated by method I (recovery of solid H3PW12O40 catalyst by evaporating homogeneous liquidphase product solution) significantly decreased with increasing recycling run, while that over H3PW12O40 catalyst regenerated by method II (regeneration of H3PW12O40 catalyst by oxidative calcination of solid product recovered by method I) was slightly decreased with no significant catalyst deactivation with respect to recycling run. On the other hand, selectivity for DCP over H3PW12O40 catalyst regenerated by method III (regeneration of H3PW12O40 catalyst by recrystallization and subsequent oxidative calcination of solid product recovered by method II) was the same as that over fresh catalyst without any catalyst deactivation with respect to recycling run. Thus, method III was found to be the most efficient method for the regeneration of H3PW12O40 catalyst.  相似文献   

9.
In the current investigation a series of oxygen-rich bismuth oxychloride Bi12O17Cl2 samples through an ethylene glycol-solvothermal route were constructed at different calcination temperatures and fully characterized by X-ray diffraction patterns, scanning electron microscopy, Fourier transformed infrared spectroscopy, X-ray photoelectron spectroscopy, UV–Vis diffuse reflectance spectra, X-ray energy dispersion spectroscopy, and photoluminescence spectra. It was demonstrated that the calcination temperatures indeed had a crucial effect on the crystallinity, grain size, morphology, optical property, and charge carrier separation of Bi12O17Cl2 series. These Bi12O17Cl2 samples showed significantly improved photocatalytic degradation over dye Rhodamine B and colorless antibiotic tetracycline hydrochloride. Particularly, the best candidate, the sample 350 °C—Bi12O17Cl2 could show apparent reaction rate constants that were nearly 28.2, 1.2 times of N–TiO2 over Rhodamine B and tetracycline hydrochloride, respectively. The possible reason of enhancing photocatalytic performance by various Bi12O17Cl2 samples calcined at different temperatures was discussed and major oxidative radicals maybe generated during photocatalytic processes were detected.  相似文献   

10.
Bi2MoO6 nanomaterials are synthesized by a facile solvothermal method. Morphology and structure of the Bi2MoO6 nanomaterials are analyzed by SEM, XRD, N2 adsorption techniques and XPS. Gas-sensing properties of the as-prepared Bi2MoO6 sensors are also systematically investigated. The results show the Bi2MoO6 nanomaterials consist of nanosheets and demonstrate good crystallinity. The optimal operating temperature of the Bi2MoO6 sensors is 240 °C. At this operating temperature, The Bi2MoO6 sensor exhibits a fast response-recovery to ethanol, suggesting its excellent potential application as a gas sensor for ethanol gas-sensing applications.  相似文献   

11.
The operation of a gas-phase Br2–H2 flow battery is analyzed via a mathematical model and compared to experimental data. The model predicts the operating conditions of the cell in both fuel-cell (i.e., discharge) and electrolysis (i.e., charge) mode as a function of current, inlet gas composition, flow rate, and pressure differential across the membrane. The analysis reveals that gas-phase Br2/HBr reactants significantly enhance mass transfer, which enables higher currents densities to be achieved compared to a liquid-fed system. A key feature of the model is water transport across the membrane, which determines membrane conductivity, reactant concentration and undesired condensation. The model is used to provide insight into cell operation, including operating conditions needed to avoid water condensation.  相似文献   

12.
Spinel Li4Mn5O12 was prepared by a sol–gel method. The manganese oxide and activated carbon composite (MnO2-AC) were prepared by a method in which KMnO4 was reduced by activated carbon (AC). The products were characterized by XRD and FTIR. The hybrid supercapacitor was fabricated with Li4Mn5O12 and MnO2-AC, which were used as materials of the two electrodes. The pseudocapacitance performance of the Li4Mn5O12/MnO2-AC hybrid supercapacitor was studied in various aqueous electrolytes. Electrochemical properties of the Li4Mn5O12/MnO2-AC hybrid supercapacitor were studied by using cyclic voltammetry, electrochemical impedance measurement, and galvanostatic charge/discharge tests. The results show that the hybrid supercapacitor has electrochemical capacitance performance. The charge/discharge test showed that the specific capacitance of 51.3 F g−1 was obtained within potential range of 0–1.3 V at a charge/discharge current density of 100 mA g−1 in 1 mol L−1 Li2SO4 solution. The charge/discharge mechanism of Li4Mn5O12 and MnO2-AC was discussed.  相似文献   

13.
A series of RuO2 · xH2O/carbon aerogel (CA) composite electrode materials was prepared by a chemical precipitation method. Ultrasonication was used to accelerate the chemical reaction and improve the dispersion of RuO2 · xH2O particles on the surface and the pores of the aerogel. The structure and morphology of the as-prepared composite were characterized by N2 adsorption isotherm, X-ray diffraction (XRD), and field emission-scanning electron microscopy (FE-SEM). The results showed that the CA had a pearly network structure and the composites had a relatively high specific surface area and mesopore volume. The electrochemical performance of the composite electrodes was studied by cyclic voltammetry, galvanostatic charge/discharge measurements and electrochemical impedance measurements. The results indicated a substantial increase in the specific capacitance of the composite. Moreover, the utilization efficiency of RuO2 · xH2O was greatly improved by loading it on the conductive and porous CA due to a significant improvement in the inter-particle electronic conductivity and the extensive mesoporous network of the composites.  相似文献   

14.
In this study, 10B2O3/polyimide (PI) hybrid materials were synthesized with the aim to improve their thermal stability and neutron shielding properties. 3,3′-Diaminodiphenyl sulfone (DADPS) reacted with 3,3′,4,4′-benzophenonetetracarboxylic dianhydride (BTDA) in N-methyl-2-pyrrolidone (NMP) and mixed with amine functionalized 10B2O3 to prepare a series of poly (amic acid), meanwhile, corresponding PIs were obtained via the thermal imidization procedures. The morphologies and structures of the prepared hybrid materials were characterized by scanning electron microscopy (SEM) and Fourier transform infrared spectroscopy (FT-IR). The thermooxidative and flame retardancy properties of the PI films were examined by thermogravimetric analysis (TGA) and limiting oxygen ındex (LOI). The experimental results showed that as the amount of functionalized 10B2O3 was increased, flame retardant properties of the hybrid films were increased. Hybrid materials were also irradiated with thermal neutrons. The neutron shielding properties increasing depends on the amount and the distribution of the 10B isotope.  相似文献   

15.
The concentration dependence of the electrical conductivity of glasses in the Tl2O-B2O3 system is studied. The nature of charge carriers in this system is experimentally investigated for the first time. It is demonstrated using the Hittorf, Tubandt, and Hebb-Liang-Wagner techniques and the Faraday law that neither Tl+ ions nor electrons are involved in the electricity transport. The verification of the Faraday law does not reveal the presence of thallium in the amalgam of the cathode or a change in the sample weight after electrolysis, to within the experimental error. This allows one to make the inference that protons can be charge carriers in glasses of the Tl2O-B2O3 system. It is shown using extended X-ray absorption fine structure (EXAFS) spectroscopy that Tl3+ ions and thallium Tl0 reduced to the metallic state are absent in the structure of the glasses under investigation. This means that thallium in glasses of the Tl2O-B2O3 system occurs only in the form of Tl+ ions. The analysis of the IR spectroscopic data leads to only a qualitative conclusion that the water content in the glasses insignificantly increases with an increase in the thallium oxide content. An increase in the electrical conductivity of glasses in the Tl2O-B2O3 system with an increase in the thallium oxide content is explained by the increase in the number of protons formed upon dissociation of H+[BO4/2]? structural-chemical units, because their concentration increases with increasing Tl2O content. In the structure of boron oxide, impurity hydrogen enters predominantly into the composition of H+[O2/2BO?] structural-chemical units, for which the dissociation energy is higher than that for the H+[BO4/2]? structural-chemical units. The increase in the concentration of H+[BO4/2]? structural-chemical units is accompanied by the increase in the number of dissociated protons, which are charge carriers in glasses of the Tl2O-B2O3 system.  相似文献   

16.
Mg(OH)2 films on Al substrates were fabricated by ink-jet printing, and they were applied as photocatalysts in solar fuels production (H2 and CH3OH) from CO2 and H2O conversion. The films were fabricated by means of a deposition of a solution composed of magnesium complex nanoparticles over aluminum foils, which were submitted to a heat treatment to promote the crystallization of Mg(OH)2. The films were characterized by razing incidence X-ray diffraction (GZXD), Fourier-transform infrared spectroscopy (FTIR), Scanning electronic microscopy, X-ray photoelectron spectroscopy (XPS), and N2 physisorption by BET method. The Mg(OH)2 was detected in all the samples synthesized with 1 to 40 layers. According to XPS and FTIR analysis, it was detected the presence of carbonates related to Mg3O(CO3)2 and Al0 and Al3+ due to the substrate. The highest photocatalytic activity was reached using 30 layers of Mg(OH)2 for H2 and CH3OH generation, which it was 268 and 15 µmol g??1h??1, respectively. These results were associated to the presence of adequate amounts of MgO and Al2O3 that promote an efficient transfer of the photogenerated electrons between them. Furthermore, the formation of porous structures with high surface area and relative high roughness promoted an increase in the mass transport between the gas and liquid phase, which increase the effectiveness of the photocatalysts.  相似文献   

17.
The basic principles of the preparation of powdered carbon nitride C3N4 in bulk amounts are developed. Synthetic carbon nitride C3N4 was identified using X-ray powder diffraction, infrared absorption, and reduction melting in a carrier gas (helium) flow with subsequent chromatographic separation.Original Russian Text Copyright © 2004 by Fizika i Khimiya Stekla, Mohammad Arif, Blinov, Lappalainen, Filippov.  相似文献   

18.
Thermodynamic analysis of the correlation of H2S and COS has been carried out at the temperature range of 400–650 °C at which high temperature desulfurization of coal gas is usually performed. The correlation of the two sulfur species is mainly through the reaction H2S+CO→COS+H2. Simulated coal gas with the following composition CO 32.69%, H2 39.58%, CO2 18.27%, N2 8.92% and H2S 0.47% was used in this study, and the equilibrium concentrations of the two species at different temperatures were calculated. The results of Fe-based sorbents during sulfidation were compared with calculations. It is concluded that the above reaction may reach equilibrium concentration in the presence of the Fe-based sorbents, which means the Fe-based sorbents may effectively catalyze the reaction between H2S and CO. Because of the correlation of the two sulfur species, both can be effectively removed at high temperatures simultaneously, offering high temperature desulfurization some advantages over low temperature desulfurization processes.  相似文献   

19.
Split-flow gas sweetening is known to consume less energy than a conventional gas sweetening process when the inlet sour gas contains a high concentration of acid gases. In this work, a computer simulation of a split-flow natural gas sweetening process based on absorption/stripping process with alkanoamine (MEA and DGA) solutions, using Aspen plus, was performed. The input of parameters such as the concentration of sour gases (CO2, H2S) in the feed gas has been examined. Simulation results show that the split-flow gas sweetening process can reduce the reboiler duty of a stripping tower better than the conventional gas sweetening process according to the concentration of CO2 in the feed gas.  相似文献   

20.
A Pd/C electrode modified by H3PMo12O40 was prepared and its catalytic performance for H2O2 electroreduction in acidic medium was investigated by cyclic voltammograms. Pd nanoparticles supported on Vulcan XC-72 carbon were prepared by chemical reduction of PdCl2 in aqueous solution using NaBH4 as the reducing agent. X-ray diffraction analysis indicated that the particle size of Pd is around 9.7 nm. The modified electrode was prepared by cyclic voltammograms in H2SO4 solution containing H3PMo12O40. The results showed that H3PMo12O40 can efficiently enhance the electrocatalytic activity for H2O2 electroreduction on Pd/C. The effect of H3PMo12O40 content on the electrocatalytic activity of the catalyst was also investigated by CV. The best results appeared at the concentration of H3PMo12O40 = 0.5 mmol L−1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号