首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 859 毫秒
1.
Thermal behaviour and morphology of blends of poly(ethylene oxide) (PEO) and poly(styrene-co-maleic anhydride) (SMA) prepared by the coprecipitation technique were studied by means of differential scanning calorimetry, optical microscopy and thermogravimetry. SMA containing 25wt% maleic anhydride (MA) was found to be miscible with PEO when the SMA content was greater than 80%. The melting temperature and crystallinity depended on the composition of the blend. SMA appears to segregate interlamellarly during the isothermal crystallization of PEO. The thermal stability of blends was enhanced and was higher than that of pure PEO and SMA. © of SCI.  相似文献   

2.
Grafting polymers onto carbon black surface by trapping polymer radicals   总被引:1,自引:0,他引:1  
Qiang Yang  Weidong Xiang  Jianhua Li 《Polymer》2007,48(10):2866-2873
Polystyrene, poly(styrene-co-maleic anhydride), poly[styrene-co-(4-vinylpyridine)] and poly(4-vinylpyridine) with well-defined molecular weights and polydispersities were synthesized using 4-hydroxyl-2,2,6,6-tetramethylpiperidin-1-oxyl (HTEMPO)-mediated radical polymerization initiated by azobisisobutyronitrile or benzoyl peroxide. The resultant polymers were grafted onto carbon black surface through a radical trapping reaction at 130 °C in DMF. 1H NMR, TGA, TEM, AFM, DSC and dynamic light scattering were used to characterize the carbon black grafted with polymers. It was found that the carbon black grafted with polystyrene and poly(styrene-co-maleic anhydride) could be dispersed in THF, chloroform, dichloromethane, DMF, etc., and the carbon black grafted with poly(4-vinylpyridine) and poly[styrene-co-(4-vinylpyridine)] could be well dispersed in ethanol.  相似文献   

3.
This study investigated the effect of blending poly(styrene-co-maleic anhydride) (SMA) on the mechanical and thermal properties of nylon-6/polyether block amide (PEBA) blend. In these blends, nylon-6 was toughened with PEBA using SMA as the compatibilizer. All the blends were prepared via direct melt compounding using a co-rotating twin screw extruder. The amount of PEBA added affected the crystallization characteristics and the relative ratio of γ and α crystalline phases of Nylon 6. The crystallization rate of Nylon 6 was also affected by the cooling rate and the amount of PEBA added. The results of mechanical tests showed that the tensile properties, flexural properties, and impact strengths of the nylon-6/PEBA were all increased when blended with 1 wt% of SMA, at both 23 and ?20 °C. However, for neat nylon-6, the impact strength was not affected despite that both tensile and flexural properties were increased by the blending of SMA. The results indicated that SMA can increase the compatibility between nylon-6 and PEBA, thus expanding the usage of nylon-6/PEBA blend in low-temperature applications.  相似文献   

4.
Blends of a poly(styrene-co-acrylonitrile) (SAN) with poly(ethene-co-1-octene) rubber (EOR) were investigated. An improved toughness–stiffness balance was obtained when adding as a compatibilizer a blend consisting of oxazoline-functionalized EOR, prepared by grafting EOR with oxazoline-functional maleinate, and poly(styrene-co-maleic anhydride) (SMA), which is miscible with SAN. Enhanced interfacial adhesion was evidenced by the improved dispersion of the EOR in the SAN matrix and the reduced glass transition temperature of the dispersed EOR phase. Morphology studies using transmission electron microscopy revealed formation of an interphase between the matrix and the rubber particles. © 1999 John Wiley & Sons, Inc. J Appl Polym Sci 73: 1685–1695, 1999  相似文献   

5.
Summary Alternating propene-carbon monoxide copolymers (P-CO) were melt-blended with polystyrene, poly(styrene-co-acrylonitrile) (SAN), and with poly(styrene-co-maleic anhydride) (SMA). P-CO forms homogeneously miscible blends with SAN containing 25 wt% AN at the investigated blend compositions. The transparent blends have single, intermediate glass transition temperatures that fit the Fox equation. The elastic properties of P-CO at room temperature disappear upon blending with SAN because the T g is driven above RT. Polystyrene and SMA are not miscible with P-CO and form heterogeneous blends with two glass transitions. This demonstrates that both the polarity of the styrenic copolymer and the nature of the comonomer govern its phase behavior. Received: 14 January 1999/Revised version: 19 April 1999/Accepted: 19 April 1999  相似文献   

6.
To obtain a new type of macromolecular reactive dye with high fixation and good light fastness, poly(styrene-co-maleic acid) was synthesised by co-polymerisation of styrene and maleic anhydride, then, through nitration, reduction, diazotisation and coupling reaction, novel macromolecular reactive dyes were prepared with a solubility greater than 60 g/L. The dyes were used to dye cotton fabrics; the results showed their fixation was more than 92%, and both the rub and wash fastness of the dyes were good. The light fastness of the red and blue dyes with the ethoxy group on melamine was grade 4, and for the yellow dye reached grade 5. The poly(styrene-co-maleic acid) macromolecular reactive dyes exhibit very good application prospects in practice.  相似文献   

7.
Blends of polystyrene (PS) and polyurethane (PU) elastomer were obtained by melt mixing, using poly(styrene-co-maleic anhydride) (SMA) containing 7 wt % of maleic anhydride groups as a reactive compatibilizer. Polyurethanes containing polyester flexible segments, PU-es, and polyether flexible segments, PU-et, were used. These polyurethanes were crosslinked with dicumyl peroxide or sulfur to improve their mechanical properties. The anhydride groups of SMA can react with the PU groups and form an in situ graft copolymer at the interface of the blends during their preparation. The rheological behavior was accompanied by torque versus time curves and an increase in the torque during the melt mixing was observed for all the reactive blends, indicating the occurrence of a reaction. Solubility tests, gel permeation chromatography, and scanning electronic microscopy confirmed the formation of a graft copolymer generated in situ during the melt blending. These results also indicate that this graft copolymer contains C C bond between SMA and PU chains. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 82: 2514–2524, 2001  相似文献   

8.
Addition of rigid poly(styrene-co-maleic anhydride) (SMA) to a polyamide-6 (PA-6) matrix leads to a system with increased stiffness and unchanged toughness as a consequence of absorption of deformational energy by the plastic deformation of brittle inclusions together with the matrix. The range of properties of both components, where this effect occurs, was studied. In addition to the use of various PA-6 and SMA types, PA-6 was also modified with epoxy resin, as well as SMA with liquid rubber bearing amino groups. Owing to the crosslinking ability of both modifiers, the influence of the changed deformability of blend components was demonstrated. Simultaneous influencing of rheological properties and reduction of the amount of reactive groups usable for the in situ compatibilizer formation make it possible to vary the size of dispersed SMA particles and the interfacial adhesion. Thus, a more comprehensive insight into the behavior of ductile-brittle blends is gained. As SMA and modifiers have negative effect on the PA-6 crystallinity, comparison of the obtained data with model calculations is difficult.  相似文献   

9.
Melt blends of nylon with poly(styrene-co-maleic anhydride) (SMA) were prepared in a twin-screw extruder. Viscoelastic properties of the melt and morphological, thermal, and mechanical properties of the blends were determined. Fourier-transform infrared (FTIR) spectroscopy measurement indicated reactions between nylon and SMA. Melting peak temperature (Tm) of nylon was not changed in blends. This, together with the FTIR results, assured that the reactions occur mainly with the free amide end groups of nylon. Melt viscosity, elasticity, and the heat-distortion temperature (HDT) of nylon was significantly increased with the addition of SMA. Tensile strength and impact strength of nylon were, respectively, in general, increased and decreased with SMA.  相似文献   

10.
Amino-modified silica nanoparticles (SiO2─NH2) were first prepared by hydrolytic condensation of tetraethyl orthosilicate and 3-aminopropylmethyldiethoxysilane. Then, organic–inorganic hybrid particles (SiO2─SMA) were prepared by the amidation reaction between SiO2─NH2 and poly(styrene-alt-maleic anhydride) (SMA). Subsequently, SiO2─SMA particles were employed for modifying bisphenol-A epoxy/anhydride thermoset. Compared with pure cured epoxy, the modified epoxy thermosets with only 1 wt % of SiO2─SMA particles could achieve a simultaneous toughening and reinforcing performance. The tensile strength, impact strength, and fracture toughness of epoxy thermoset were increased by 14.1, 44.3, and 114.4%, respectively. Moreover, the modification also improved the thermal stability of epoxy thermosets, and the modulus and glass transition temperature of cured resin were not sacrificed. It can be attributed to the rigid structure of SiO2, as well as the anhydride and carboxyl groups onto the surface of SiO2─SMA particles participating in the epoxy curing reaction and effectively enhancing the crosslinking density of epoxy thermoset.  相似文献   

11.
Poly(styrene‐co‐maleic anhydride) (SMA) is a synthetic copolymer with interesting thermal and membrane properties. Schiff bases are one of the most widely used organic compounds with chelating ligands having N, S, and O as donor atoms. A Schiff‐base‐modified SMA was synthesized by the reaction of the copolymer with salicylaldehyde thiosemicarbazone. Gold (Au) nanoparticles (NPs), synthesized by a citrate reduction method were used to prepare the polymer–Au nanocomposites. In this research, we explored and investigated the effects on the linear and nonlinear optical properties of the Schiff‐base‐modified SMA copolymer with the incorporation of Au NPs. Open‐aperture Z‐scan measurements were recorded for the polymer, modified polymer, and polymer–Au nanocomposites at 532 nm with an Nd:YAG laser with a repetition rate of 10 Hz and a pulse width of 5 ns. The results indicate that the addition of the Au NPs effectively enhanced the two‐photon absorption coefficients of the polymer and, thereby, provided a platform for the development of nonlinear optical devices with good optical‐limiting properties. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 45377.  相似文献   

12.
Electrodeposition of styrene-co-maleic anhydride (SMA) polymer, as thin films on carbon particle substrates, was carried out in a fluidized electrode bed reactor (FEBR). Feeder current, time of deposition, flow rate of anolyte (i.e., bed expansion or bed porosity), concentration of SMA in the anolyte, and pH of the anolyte were the key parameters investigated. The film characteristics were evaluated through SEM and FTIR analyses, the amounts determined by weighing. The effect of these parameters on the electrodeposition process is discussed and optimum conditions for deposition are proposed. Also, a possible mechanism for electrodeposition, particularly for the SMA–carbon system, is discussed. Furthermore, where relevant, the parameters and mechanism are compared with those for our parallel work on the ethylene-co-acrylic acid (EAA)–carbon system.  相似文献   

13.
A novel attempt has been made to develop ambient cured polyamine amide (PAA) resins by the condensation polymerization reaction of oil fatty amide diol (N,N-bis 2-hydroxy ethyl linseed oil fatty amide) (HELA) and o-phenylene diamine, which was further modified by poly(styrene-co-maleic anhydride) (SMA) at different phr (parts per hundred part of resin) to get a series of PAA–SMA resins. The structural elucidation of HELA, PAA and PAA–SMA were carried out by FT-IR, 1H-NMR and 13C-NMR spectroscopic techniques. The physico-chemical and physico-mechanical analyses were carried out by standard laboratory methods. Thermal analyses of these resins were accomplished by thermogravimetric analyses (TGA) and differential scanning calorimetry (DSC) techniques. Coatings of PAA–SMA were prepared on mild steel strips to evaluate their physico-mechanical and chemical/corrosion resistance performance under various corrosive environments. It was found that among the PAA–SMA systems, PAA-35 showed the best physico-mechanical and corrosion resistance performance. Thermal studies reveal that the coatings can be safely used up to 305 °C.  相似文献   

14.
The objective of this work was to study the miscibility and phase‐separation temperatures of poly(styrene‐co‐maleic anhydride) (SMA)/poly(vinyl methyl ether) (PVME) and SMA/poly(methyl methacrylate) (PMMA) blends with differential scanning calorimetry and small‐angle light scattering techniques. We focused on the effect of SMA partial imidization with aniline on the miscibility and phase‐separation temperatures of these blends. The SMA imidization reaction led to a partially imidized styrene N‐phenyl succinimide copolymer (SMI) with a degree of conversion of 49% and a decomposition temperature higher than that of SMA by about 20°C. We observed that both SMI/PVME and SMI/PMMA blends had lower critical solution temperature behavior. The imidization of SMA increased the phase‐separation temperature of the SMA/PVME blend and decreased that of the SMA/PMMA blend. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

15.
Using direct polymer reaction of poly(styrene‐co‐maleic anhydride) (SMA), a synthesis of copolymer of styrene and N‐aryl succinimide (SMI) has been investigated. SMI copolymers were synthesized from SMA copolymers by a concerted two‐step reaction, which consisted of the condensation reaction (step 1) of SMA with aromatic amine to prepare a precursor, succinamic acid, for imide formation and the cyclodehydration reaction (step 2) of succinamic acid. In this article, the application of Searle's preparation method of N‐aryl or N‐alkyl maleimide to the direct polymer reaction for SMI was attempted. Compared with synthesis of monomeric imides, the imide formation in polymeric condition appeared to be a little more sensitive to the reaction condition. The optimum condition for maximum conversion was examined in terms of time, temperature, and the amount of reactants. © 1999 John Wiley & Sons, Inc. J Appl Polym Sci 71: 1187–1196, 1999  相似文献   

16.
Chunyi Tang  Haiqing Liu 《Polymer》2007,48(15):4482-4491
Random and alternating poly(styrene-co-maleic anhydrides) (SMAs) with respective maleic anhydride (MAh) content of 32 and 48% were synthesized through radical polymerization. SMA nanofibers with diameter down to 180 nm were generated by electrospinning from solvents acetone, dimethylformamide (DMF), and their mixtures. Fiber diameter increased dramatically when the SMA concentration in the spinning solution reached to a critical point where the SMA chains are extensively entangled. The diameter of SMA nanofiber decreased with increasing DMF content in the mixture, but beads are often accompanied as DMF content is over 50%. The optimum acetone/DMF ratio was found to be 2:1, in which continuous electrospinning was achieved and bead-free nanofibers were obtained. SMA nanofibers with MAh content of 32 and 48% were crosslinked with diethyleneglycol and subsequently hydrolyzed in NaOH/EtOH to turn SMA into crosslinked sodium form SMA (SMA-Na) hydrogel nanofiber. These hydrogel nanofibers were able to retain fiber form after immersing in water for 24 h. Their water absorption ratio was up to 37.6 and 8.2 g/g in distilled water and 0.25 N NaCl aq. solution, respectively.  相似文献   

17.
Matrices of poly(styrene-co-maleic anhydride) with surface containing functional anhydride groups of different percentage was prepared by solution polymerization. Ampicillin was bound on the surface of this matrix by chemical bonding in organic medium. The amount of Ampicillin chemically bound to the matrix was spectroscopically characterized and the in vitro release rate of Ampicillin in weakly basic medium was established along with the determination of its antimicrobial activity. This prodrug allows a prolonged release (6–8 days) of the drug.  相似文献   

18.
Selective localization of carbon black (CB) at the interface of polymer blends was achieved by the method that poly(styrene-co-maleic anhydride) (SMA) was first reacted with CB, and then blended with nylon6/polystyrene (PA6/PS). In the PA6/PS blends, CB was localized in PA6 phase and typical double percolation was exhibited. In the PA6/PS/(SMA–CB) blends, TEM results showed that CB particles were induced by SMA to localize at the interface, resulting in the especial interface morphology fabricated by SMA and CB. The especial interface morphology of PA6/PS/(SMA–CB) caused distinct triple percolation behavior and very low percolation threshold. The positive temperature coefficient (PTC) intensity of PA6/PS/(SMA–CB) composites was stronger than that of PA6/PS/CB and the negative temperature coefficient (NTC) effect was eliminated. The elimination of NTC effect was arisen from the especial interface morphology. A stronger PTC intensity was attributed to the low percolation threshold and the morphology.  相似文献   

19.
Side-chain liquid crystalline block polymers containing a poly[6-[4-(4′-methoxyphenyl)phenoxy]hexyl methacrylate] (PMMA-LC) segment and a styrene-co-maleic anhydride segment (alternating structure) were prepared via reversible addition fragmentation chain transfer (RAFT) polymerization. PMMA-LC was initially prepared via RAFT polymerization mediated by 2-(2-cyanopropyl)dithiobenzoate (CPDB). The resulting polymer was subsequently isolated and used to re-initiate styrene/maleic anhydride alternating copolymerization. The block copolymerization proceeded to intermediate conversions with narrow polydispersities, however at higher conversions some molecular weight broadening was observed and this was attributed to radical-radical termination reactions. The resulting polymers were analyzed via size exclusion chromatography (SEC), differential scanning calorimetry (DSC) and polarizing optical microscopy (POM). Microporous honeycomb structured films were cast from solutions of the block copolymers to form porous molecular composites.  相似文献   

20.
Adsorption of poly(5-tert-butylperoxy-5-methyl-1-hexen-3-yne-co-maleic anhydride) and poly(styrene-co-maleic anhydride) on the various ultrafine powders (TiO2, ZnO, Al2O3, CaCO3, aerosil, and quartz powder) was studied. Plateau adsorption amount per unit surface of adsorbent (as) decreased with the decreasing of particle size of the adsorbent. The as-molecular mass relationship was different for copolymers of low and high molecular mass. The fractal dimension D = 2.5 of adsorbent surface was determined if the particle radius was less than 2.5 μm. Fractal behavior was explained by aggregation of particles. Due to the aggregation the interparticle space (pore) in the area of contact of neighboring particles is inaccessible for the polymer and accessible for the solvent. The experimental isotherm with maximum was employed for estimation of the volume of inaccessible pores 2.4 cm3/g for suspension of aerosil. © 1998 John Wiley & Sons, Inc. J Appl Polym Sci 67: 299–305, 1998  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号