首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The effect of spherical particle size on the surface morphology, electrochemical property and processability of lithium iron phosphate was systematically studied. Spherical lithium iron phosphate with different particle size distributions controlled with ball time of precursor slurry was prepared by spray drying method. The samples were characterized by X-ray diffraction(XRD), scanning electron microscope(SEM), charge and discharge measurements and EIS. The electrochemical performances of the sample materials were measured by coin cells and 14500 batteries. XRD shows that the spherical lithium iron phosphate with different particle sizes all have good crystal structure due to the perfect mixing of the raw materials and rapid drying. The lithium iron phosphate microsphere with different particle sizes self-assembled with submicron primary particles has a core-shell structure. The longer ball time the precursors are, the smaller the active material particles are prepared. The electrode material with 6 h ball time of precursor slurry has the best physical properties and the processability. The composite has a uniform particle size and higher tap density of 1.46 g/cm~3, which delivers a discharge capacity of 167.6 mAh/g at a discharge rate of 0.5 C. The results were confirmed by the 14 500 mA·h cylindrical batteries, which delivers a discharge capacity of 579 mAh at 0.5 C. And low-temperature performance with capacity of 458.5 mA h at -20?C under a discharge rate of 0.5 C is the 79.2% of the same discharge rate at 25 ?C. Otherwise, the 14500 batteries also exhibit excellent cycling performance and the capacity maintains 93% after 2 000 cycles.  相似文献   

2.
LiNi0.78 Co0.2 Al0.02O2 cathode materials were prepared with a novel co-precipitation method followed by heat-treating. The properties of the materials were characterized. XRD patterns showed that no secondary phase appeared and the hexagonal lattice parameter c of LiNi0.rsCoo.2AI~0202 was larger than that of LiNi0.8Co0.2O2. The SEM images indicated that the powders of the material were submicron size. The results of the ICP-AES analysis proved that elemental compositions of the material were similar to those of the targeted one. Cyclic voltammetry (3.0- 4. 2 V) illustrated that the new material had good lithium-ion intercalation/de-intercalation performance. The results of galvanostatic cycling showed that the initial specific discharge capacity of the prepared material was 181.4 mAh/g, and the specific discharge capacity was 177.3 mAh/g after 100 cycles (0. 2C, 3.0 - 4. 2 V, vs. Li^+/Li) with the capacity retention ratio of 97.7%.  相似文献   

3.
A LiFePO_4/C composite was synthesized by a simple solid-state reaction method using glucose as reductive agent and carbon source and FePO_4 as precursor, which was prepared by introduction of Na_3PO_4 as phosphorus source and pH regulator in order to pursue lower cost and environmental protection. The structure and morphology of FePO_4 and LiFePO_4/C were investigated by X-ray diffraction(XRD) and scanning electron microscopy(SEM). Furthermore, electrochemical performance of LiFePO_4/C was investigated by galvanostatic charge–discharge tests and cyclicvoltammogram(CV). The results indicate that FePO_4 obtained has a small particle size and uniform particle distribution, which is demonstrated to be applicable as the iron source to synthesize LiFePO_4/C. Prepared LiFePO_4/C shows an excellent rate capability and cycle performance. At rates of 0.1 C, 0.2 C, 1 C and 2 C, the initial discharge capacities of 161, 158, 145 and 120 mAh/g were achieved, respectively and the discharge capacity is 154, 153, 140 and 116 mAh/g after 400 cycles. The employed method of preparing FePO_4 by introduction of Na_3PO_4 has advantages such as low cost, safe raw material, environmental benign and recyclable products, which is suitable for industrial production.  相似文献   

4.
The influence of transforming pH values on the electrochemical performance of nano-scale Ni (OH)2 was analyzed. The measurement results of XRD indicate that the nano-scale Ni (OH) 2 prepared at different transformations of pH value is β ( Ⅱ )-phase with different crystal lattice parameters. Cyclic voltammograms (CV) and electrochemical impedance spectroscopy(EIS) measurement results show that transformations of pH value affect the proton diffusion coefficient (D) and charge-transfer resistance (Re,) of the material. The simulation of.cell experiment shows that the sample prepared at a pH of 10. 1 exhibits the maximum specific capacity (327.8 mAh/g) and higher discharge platform, the discharge performance of electrodes depends on both D and Rct, so the kinetics characteristics that electrodes reaction is controlled by both mass-transfer step and charge- transfer step are put forward.  相似文献   

5.
A series of manganese spinels LiMn2-yMeyO4 (Me = Li, Al, Mg) were prepared and examined by XRD and electrochemical methods. The spinels doped with Li or high content of Al can exhibit discharge capacity in the 5 V region, but spinels doped with Mg do not exhibit any 5 V discharge capacity. It is also observed that the 5 V discharge capacity of Li/Al doped spinels will be greatly suppressed once calcinated at temperatures above 900 ℃ in preparation. It is suggested that the 5 V discharge capacity of Li/Al doped spinels may be originated from the special chemical/structural characteristics of spinel phases containing Li or high content of Al prepared at temperatures below 900 ℃.  相似文献   

6.
The commercialized lithium secondary cells need the electrode materials with high speeific capacity, lower pollution and lower price. Certain industrial materials ( NiSO_4, CoSO_4 , LiOH·H_2O)were used to synthesize Ni_(0.8)Co_(0.2)(OH)_2 of a stratified structure, when various synthesis conditions such as pH, reaction temperature et al. were controlled strictly. After LiOH·H_2O and Ni_(0.8)Co_(0.2) (OH)_2were calcinated in air atmosphere, LiNi_(0.8)Co_(0.2)O_2 positive electrode materials with good layered crystal structure was obtained. Tests showed that the optimal calcination temperature in air atmosphere was about at 720℃ and LiNi_(0.8)Co_(0.2)O_2 synthesized in the above conditions had good electrochemical properties and a low cost. The first specific: discharge capacity of the material was 186 mAh/g, and the specific discharge capacity was 175 mAh/g after 50 cycles at a 0.2C rate, between 3.0~4.2 V with a discharge deterioration ratio of 0.22% each cycle. Tests showed that LiNi_(0.8)Co_(0.2)O  相似文献   

7.
Olivine LiFePO4/C composite cathode materials were synthesized by a solid state method in N2 + 5vo1% H2 atmosphere.The effects of different iron sources,including Fe(OH)3 and FeC2O4·2H2O,on the performance of as-synthesized cathode materials were investigated and the causes were also analyzed.The crystal structure,the morphology,and the electrochemical performance of the prepared samples were characterized by X-ray diffractometry (XRD),scanning electron microscopy (SEM),laser particle-size distribution measurement,and other electrochemical techniques.The results demonstrate that the LiFePO4/C materials obtained from Fe(OH)3 at 800℃ and FeCeO4·2H2O at 700℃ have the similar electrochemical performances.The initial discharge capacities of LiFePO4/C synthesized from Fe(OH)3 and FeC2O4·2H2O are 134.5 mAh·g-1 and 137.4 mAh.g-1 at the C/5 rate,respectively.However,the tap density of the LiFePO4/C materials obtained from Fe(OH)3 are higher,which is significant for the improvement of the capacity of the battery.  相似文献   

8.
The olivine-typed cathode material of Li Fe PO4 was prepared via sol-gel method,and the bromine was doped into Li Fe PO4.The crystal structure,morphology,and electrochemical properties of the samples were investigated by X-ray diffraction,scanning electron microscopy and charge–discharge cycle measurements.The results showed that the electrochemical performance of Li Fe PO4 had been improved by bromine doping,and the best doping amount of bromine is 2%.The discharge capacity of this sample can reach 152 m Ah/g at 0.2 C.  相似文献   

9.
A polymer electrolyte based on poly(vinylidene) fluoride-hexafluoropropylene was prepared by evaporating the solvent of dimethyl formamide, and non-woven fabric was used to reinforce the mechanical strength of polymer electrolyte and maintain a good interfacial property between the polymer electrolyte and electrodes. Polymer lithium batteries were assembled by using LiCoO2 as cathode material and lithium foil as anode material. Scanning electron microscopy, alternating current impedance, linear sweep voltammetry and charge-discharge tests were used to study the properties of polymer membrane and polymer Li-ion batteries. The results show that the technics of preparing polymer electrolyte by directly evaporating solvent is simple. The polymer membrane has rich micro-porous structure on both sides and exhibits 280% uptake of electrolyte solution. The electrochemical stability window of this polymer electrolyte is about 5.5 V, and its ionic conductivity at room temperature reaches 0.151 S/m. The polymer lithium battery displays an initial discharge capacity of 138 mA·h/g and discharge plateau of about 3.9 V at 0.2 current rate. After 30 cycles, its loss of discharge capacity is only 2%. When the battery discharges at 0.5 current rate, the voltage plateau is still 3.7 V. The discharge capacities of 0.5 and 1.0 current rates are 96% and 93% of that of 0.1 current rate, respectively.  相似文献   

10.
Mn/Ni composite oxides as active electrode materials for supercapacitors were prepared by solid-state reaction through the reduction of KMnO4 with manganese acetate and nickel acetate at low temperature. The products were characterized by X-ray diffractometry(XRD) and transmission electron microscopy(TEM). The electrochemical characterizations were performed by cyclic voltammetry (CV) and constant current charge-discharge in a three-electrode system. The effects of different potential windows, scan rates, and cycle numbers on the capacitance behavior of Mn0.8Ni0.2Ox composite oxide were also investigated. The results show that the composite oxides are of nano-size and amorphous structure. With increasing the molar ratio of Ni, the specific capacitance goes through a maximum at molar fraction of Ni of 20%. The specific capacitance of Mn0.8Ni0.2Ox composite oxide is 194.5 F/g at constant current discharge of 5 mA.  相似文献   

11.
LiFePO4 was prepared by heating the pre-decomposed precursor mixtures sealed in vacuum quartz-tube. Three kinds of cooling modes including nature cooling, air quenching, and water quenching were applied to comparing the effects of cooling modes on the microstructure and electrochemical characteristics of the material. The results indicate that the water quenching mode can control overgrowth of the grain size of final product and improve its electrochemical performance compared with nature cooling mode and air quenching mode. The sample synthesized by using water quenching mode is of the highest reversible discharge specific capacity and the best cyclic electrochemical performance, demonstrating the first discharge capacity of 138.1 mA·h/g at 0.1C rate and the total loss of capacity of 3.11% after 20 cycles.  相似文献   

12.
ZrO2/Ni nanocomposite was produced by pulse electrodeposition and its superplastic properties were investigated by the tensile and bulging tests. The as-deposited nickel matrix has a narrow grain size distribution with a mean grain size of 45 nm. A maximum elongation of 605% was observed at 723 K and a strain rate of 1.67×10-3s-1 by tensile test. Superplastic bulging tests were subsequently performed using dies with diameters of 1 mm and 5 mm respectively based on the optimal superplastic forming temperature. The effects of forming temperature and gas pressure on bulging process were experimentally investigated. The results indicated that ZrO2/Ni nanocomposite samples can be readily bulged at 723 K with H/d value (defined as dome apex height over the die diameter) larger than 0.5, indicating that the nanocomposite has good bulging ability. SEM and TEM were used to examine the microstructure of the as-deposited and bulged samples. The observations showed that significant grain coarsening occurs during superplastic bulging, and the microstructure is found to depend on the forming temperature.  相似文献   

13.
A potential 4.2 V cathode material LiVPO4F for lithium batteries was prepared by two-step reaction method based on a carbon-thermal reduction (CTR) process. Firstly, V2O5, NH4H2PO4 and acetylene black are reacted under an Ar atmosphere to yield VPO4. The transition-metal reduction is facilitated by the CTR based on C→CO transition. These CTR conditions favor stabilization of the vanadium as V^3+ as well as leaving residual carbon, which is useful in the subsequent electrode processing. Secondly, VPO4 reacts with ElF to yield LiVPO4F product. The property of the LiVPO4F was investigated by X-ray diffractometry (XRD), scanning electron microscopy (SEM) and electrochemical measurement. XRD studies show that LiVPO4F synthesized has triclinic structure(space group p I ), isostructural with the naturally occurring mineral tavorite, EiFePO4-OH. SEM image exhibits that the particle size is about 2μm together with homogenous distribution. Electrochemical test shows that the initial discharge capacity of LiVPO4F powder is 119 mA·h/g at the rate of 0.2C with an average discharge voltage of 4.2V (vs Ei/Li^+), and the capacity retains 89 mA·h/g after 30 cycles.  相似文献   

14.
MoO_2 nanocrystals(NCs) on Ni foam were simply synthesized via a facile hydrothermal method and a dip-coating method. It was worth noting that ultrafine interconnected MoO_2 nanocrystals(about 10 nm) were uniformly anchored on Ni foam to fabricate a particular three-dimensional architecture, which may provide more active sites and shorter transmission pathways for lithium ions. As binder-free anode, MoO_2 NCs on Ni foam deliver a high initial discharge capacity of 990 mAh·g~(-1) and retain a reversible capacity of 924 mAh· g(-1) after 100 cycles at a current density of 0.1 C. More importantly, when the current density returns from 2 C to 0.1 C, the capacity recovers to 910 mAh·g(-1)(about 92% of the original high capacity), suggesting excellent cycling stability and rate capability. The particular 3 D electrode as binder-free anode makes it a promising anode candidate for high-performance lithium-ion batteries.  相似文献   

15.
In order to study the magnetic properties and structure of very thin permalloy films, Ni81Fe19 films of 12 nm in thickness were prepared by different instruments at an ultrahigh base vacuum and a lower base vacuum. The anisotropic magnetoresistance coefficients (△R/R) of Ni81Fe19 (12 nm) films reached 1.6 % and 0.6 %, and the coercivities were 127 and 334 A/m, respectively. X-ray photoelectron spectroscopy (XPS) and X-ray diffraction (XRD) were used to study the structure and surface chemical state. The experimental results show that the films prepared at the ultrahigh base vacuum have a smoother surface, a bigger grain size and a denser structure with fewer defects than those prepared at the lower base vacuum.  相似文献   

16.
Spinel Li Mn_2O_4 microspheres and hollow microspheres with adjustable wall thickness have been prepared using controllable oxidation of Mn CO3 microspheres precursors and following solid reactions with lithium salts. Scanning electron microscopy(SEM) investigations demonstrate that the microsphere morphology and hollow structure of precursors are inherited. The effect of hollow structure properties of as-prepared Li Mn_2O_4 on their performance as cathode materials for lithium-ion batteries has been studied. Electrochemical performance tests show that Li Mn_2O_4 hollow microspheres with small wall thickness exhibit both superior rate capability and better cycle performance than Li Mn_2O_4 solid microspheres and Li Mn_2O_4 hollow microspheres with thick wall. The Li Mn_2O_4 hollow microspheres with thin wall have discharge capacity of 132.7 m A·h·g-1 at C/10(14.8 m A·g-1) in the first cycle, 94.1% capacity retention at C/10 after 40 cycles and discharge capacity of 116.5 m Ah·g-1 at a high rate of 5C. The apparent lithium-ion diffusion coefficient(Dapp) of as-prepared Li Mn_2O_4 determined by capacity intermittent titration technique(CITT) varies from 10-11 to 10-8.5 cm2·s-1 showing a regular "W" shape curve plotted with test voltages. The Dapp of Li Mn_2O_4 hollow microspheres with thin wall has the largest value among all the prepared samples. Both the superior rate capability and cycle stability of Li Mn_2O_4 hollow microspheres with thin wall can be ascribed to the facile ion diffusion in the hollow structures and the robust of hollow structures during repeated cycling.  相似文献   

17.
The graphite was modified using pitch through dynamical melt-carbonization, and the effects of modification temperature and the amount of pitch on the characteristics of graphite were investigated. The structure and characteristics of the graphite were determined by X-ray diffractometry(XRD), scanning electron microscopy(SEM), particle size analysis and electrochemical measurements. The results show that the modified graphite has a disordered carbon/graphite composite structure, larger average particle diameter, greater tap density, and better electrochemical characteristics than the untreated graphite. The sample coated with 10% pitch dynamical melt-carbonized at 400 ℃ for 3 h and heat-treated at 850 ℃ for 2 h has better electrochemical performances with a reversible capacity of 360.5 mA·h/g, a irreversible capacity of 41.0 mA·h/g, and an initial coulombic efficiency of 89.8% compared with natural graphite and disordered carbon. The cycling stability of the Li/C cell with modified graphite as anodes is improved, and its capacity retention ratio at the 30th cycle is up to 94.37%.  相似文献   

18.
The raw carbon nanotubes ( CNTs ) prepared by chemical vapor deposition ( CVD ) were used in electrochemical lithiation. To remove the impurity the mild oxidation was done on the samples. The electrochemical characteristics of the two samples are investigated by the galvanostatic charge-dischorge measurements and cyclic voltammetry. The structural and interfacial changes of the CNTs electrode were analyzed by XRD and FTIR. The samples show a reversibility of lithium intercalation and de-intercalation. The reversible capacities of the first five cycles are larger than 300 mAh/ g and the irreversible capacity of the first cycle was much larger than that mentioned in literatures. There is no identical change in the structure during the charge and discharge. The reactions at the interface between electrode and the electrolyte are similar to those of other carbonaceous materials.  相似文献   

19.
Mg/Ni hybrid foams were fabricated by the electroless method.The Ni-P (Nickel-Phosphorous) coatings were deposited on the surface of closed-cell Mg alloy foams.The composition,microstructure and phases of the Ni-P coatings were characterized by scanning electron microscopy (SEM),energy-dispersive X-ray spectroscopy (EDS) and X-ray diffraction (XRD),respectively.The compressive tests were performed on the Mg/Ni hybrid foams at 400 ℃ using the Mg alloy foams as a reference.The experimental results show that the yield strength,plateau stress and energy absorption capacity of the closed-cell Mg alloy foams at high temperature were improved by the Ni-P coating.And there are four main modes for the Mg/Ni hybrid foam failure at 400 ℃,i e,shearing in cell wall,bending in cell edge,shedding and cracking in Ni-P coating.  相似文献   

20.
The cathode material LiCo1-xLaxO2(x=0,0.01,0.02,0.05)for Li-ion battery was prepared in solid phase,Effects of La dopant on the structure were analyzed by X-ray diffraction.and the morphology of the samples was observed by scanning electron microscopy.The results show that the structure of LiCoO2 becomes more and more non-perfect with the4 increasing comtent of La and some impurity peaks appear in the XRD pattern when the La content reaches 0.05.Meamchile,a high synthesis temperature is advantageous to the intact and unitary compound,The initial discharge capacity of doped material containing La(x=0.01)synthesized at 900℃ reaches 160 mAh/g by charge-discharge test.which prior to that of non-doped material synthesized under the same condition.However,the increasing La content deteriorates the cycling performance.Therefore,the appropriate content of La is 0.01 and the optimum synthesis temperature is 900℃.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号