首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
为研究带可更换低屈服点耗能梁段 端板连接的钢框筒结构(SFTS-RSLs)抗震性能和震后可更换能力,以耗能梁段长度和楼板组合效应为研究变量,设计3个2/3缩尺的单层单跨SFTS-RSLs子结构平面试件。框筒柱和裙梁采用Q460高强钢,耗能梁段采用低屈服点钢LYP225。通过水平低周往复加载试验对结构的破坏模式、刚度、承载力、耗能能力、延性、可更换能力以及耗能梁段塑性转角与超强系数进行研究。试验结果表明:试件滞回曲线饱满,延性高,具有稳定、良好的耗能能力和塑性变形能力;耗能梁段的破坏模式主要为翼缘严重屈曲且翼缘 端板焊缝撕裂或腹板撕裂;耗能梁段超强系数均值约为1.95,极限塑性转角超过0.18rad,远大于AISC 341-16规定的塑性转角限值0.08rad;楼板组合效应对结构承载力、耗能能力、延性、可更换能力、耗能梁段塑性转角和超强系数影响不大,对结构的弹性刚度影响显著;减小耗能梁段长度能够提高结构承载力、抗侧刚度、耗能梁段塑性转角和超强系数,但会降低结构的耗能能力和延性;加载过程中,结构的塑性变形与损伤集中在耗能梁段,框筒柱和裙梁处于弹性状态,有利于结构震后修复与正常使用功能的快速恢复。  相似文献   

2.
为了改善传统钢框筒结构抗震性能较差的问题,提出了带端板螺栓连接可更换剪切型耗能梁段的高强钢框筒结构(HSS-FTS-RSLs).考虑耗能梁段长度和楼板的影响,设计了 3个2/3比例的单层单跨HSS-FTS-RSLs子结构试件,对这3个试件进行低周往复加载试验并进行耗能梁段的更换,研究HSS-FTS-RSLs的抗震性能和震后可更换能力.试验结果表明:带端板螺栓连接的子结构试件在地震作用下滞回曲线饱满,损伤主要集中于耗能梁段,具有良好的抗震性能;更换耗能梁段后不会影响结构的刚度和承载力以及连接处的传力性能,结构的可更换允许残余层间侧移为0.40%;楼板可以使结构的弹性刚度和承载力分别提高7.40%和5.21%,楼板损伤主要集中在耗能梁段与裙梁连接区域上方;剪切型耗能梁段在循环荷载作用下超强系数为1.63~1.81,最大塑性转角可达到0.15~0.21rad,呈现出良好的超强和变形能力;耗能梁段长度比e/(Mp/Vp)(其中e为耗能梁段长度,Mp、Vp分别为耗能梁段的塑性受弯承载力和塑性受剪承载力)越小,结构的刚度和承载力越高,耗能梁段的变形能力越强.  相似文献   

3.
为了改善传统钢框筒结构抗震性能较差的问题,提出了带端板螺栓连接可更换剪切型耗能梁段的高强钢框筒结构(HSS-FTS-RSLs).考虑耗能梁段长度和楼板的影响,设计了 3个2/3比例的单层单跨HSS-FTS-RSLs子结构试件,对这3个试件进行低周往复加载试验并进行耗能梁段的更换,研究HSS-FTS-RSLs的抗震性能和震后可更换能力.试验结果表明:带端板螺栓连接的子结构试件在地震作用下滞回曲线饱满,损伤主要集中于耗能梁段,具有良好的抗震性能;更换耗能梁段后不会影响结构的刚度和承载力以及连接处的传力性能,结构的可更换允许残余层间侧移为0.40%;楼板可以使结构的弹性刚度和承载力分别提高7.40%和5.21%,楼板损伤主要集中在耗能梁段与裙梁连接区域上方;剪切型耗能梁段在循环荷载作用下超强系数为1.63~1.81,最大塑性转角可达到0.15~0.21rad,呈现出良好的超强和变形能力;耗能梁段长度比e/(Mp/Vp)(其中e为耗能梁段长度,Mp、Vp分别为耗能梁段的塑性受弯承载力和塑性受剪承载力)越小,结构的刚度和承载力越高,耗能梁段的变形能力越强.  相似文献   

4.
《工业建筑》2021,51(5):82-92
传统钢框筒结构(SFTSs)的裙梁跨深比较小,梁端往往先于柱端形成塑性铰,使得结构的延性和耗能能力较差。针对这一问题,提出在裙梁跨中设置易于更换的剪切型耗能梁段,即含可更换耗能梁段的钢框筒结构(SFTS-RSLs)。设计了30层的SFTS和SFTS-RSL算例结构,从中选取子结构进行精细化有限元分析,研究结构的滞回性能,并对整体算例结构进行非线性静力和动力分析,研究结构的整体抗震性能。分析结果表明:SFTS和SFTS-RSL具有相同的初始弹性刚度;相较于SFTS,SFTS-RSL具有较低的屈服荷载和极限荷载,较高的延性和耗能能力;设置耗能梁段可以减小结构的层间侧移,且不会加剧结构的剪力滞后效应;SFTS-RSL的损伤主要集中于耗能梁段,其余构件始终保持弹性状态。研究结果表明SFTS-RSLs是一种性能优良的双重抗侧力结构体系,可以通过更换耗能梁段实现震后结构功能的可快速恢复。  相似文献   

5.
含可更换剪切型耗能梁段钢框筒利用位于裙梁跨中的耗能梁段集中塑性变形,有利于震后耗能梁段的替换和结构使用功能的快速恢复。为研究耗能梁段的构造对子结构和耗能梁段滞回性能的影响,基于某一30层原型结构的子结构,考察了耗能梁段长度、腹板高厚比、翼缘宽厚比、加劲肋间距、加劲肋单双面布置的影响。研究表明:随着耗能梁段长度的增加,子结构的承载力逐渐减小,耗能梁段的超强系数、塑性转角逐渐减小,建议耗能梁段的长度取柱距的(0.15~0.24)倍;随着腹板高厚比的增大,各子结构的承载力、累积耗能明显减小,耗能梁段的超强系数、塑性转角逐渐增大,极短型耗能梁段相比普通型耗能梁段对腹板高厚比的变化更为敏感;翼缘宽厚比的变化对子结构和耗能梁段性能的影响较小;当加劲肋间距超过限值,对极短型耗能梁段性能的影响较大,建议普通型耗能梁段的加劲肋间距可适当超过限值;极短型耗能梁段宜布置双面加劲肋,加劲肋单面布置时增加其厚度对子结构和耗能梁段性能的改善作用较小。  相似文献   

6.
为改善传统钢框筒结构延性差和震后修复困难的问题,提出了带双槽形腹板螺栓连接可更换剪切型耗能梁段的钢框筒结构(SFTS-RSLs)。为研究SFTS RSLs的抗震性能和耗能梁段的可更换能力,对2种耗能梁段长度(400 mm和280 mm)的2/3缩尺单跨双半层SFTS-RSLs子结构进行两阶段拟静力试验;基于耗能梁段腹板的往复拉压试验标定混合强化模型参数;基于两子结构加载阶段Ⅱ的试验结果验证了子结构试件有限元模型的有效性,并对耗能梁段转动能力受耗能梁段长度和加固板的影响进行分析。结果表明:长度分别为400 mm和280 mm的双槽形Q235耗能梁段的可更换最大层间位移角分别为0.32%、0.27%;超强系数均大于Popov等建议的1.5,塑性变形能力均满足美国规范ANSI/AISC 341-16的要求;替换耗能梁段可以使子结构性能接近初始水平;设短双槽形耗能梁段的子结构延性、累积耗能相比设长耗能梁段的子结构的明显降低;子结构破坏模式为双槽形耗能梁段加劲肋倒角处的焊缝裂缝扩展延伸引起的腹板撕裂;建议取双槽形耗能梁段长度与柱距之比为0.14~0.23,并应考虑连接处布置耗能梁段加固板。  相似文献   

7.
为改善传统钢框筒结构延性差和震后修复困难的问题,提出了带双槽形腹板螺栓连接可更换剪切型耗能梁段的钢框筒结构(SFTS-RSLs)。为研究SFTS RSLs的抗震性能和耗能梁段的可更换能力,对2种耗能梁段长度(400 mm和280 mm)的2/3缩尺单跨双半层SFTS-RSLs子结构进行两阶段拟静力试验;基于耗能梁段腹板的往复拉压试验标定混合强化模型参数;基于两子结构加载阶段Ⅱ的试验结果验证了子结构试件有限元模型的有效性,并对耗能梁段转动能力受耗能梁段长度和加固板的影响进行分析。结果表明:长度分别为400 mm和280 mm的双槽形Q235耗能梁段的可更换最大层间位移角分别为0.32%、0.27%;超强系数均大于Popov等建议的1.5,塑性变形能力均满足美国规范ANSI/AISC 341-16的要求;替换耗能梁段可以使子结构性能接近初始水平;设短双槽形耗能梁段的子结构延性、累积耗能相比设长耗能梁段的子结构的明显降低;子结构破坏模式为双槽形耗能梁段加劲肋倒角处的焊缝裂缝扩展延伸引起的腹板撕裂;建议取双槽形耗能梁段长度与柱距之比为0.14~0.23,并应考虑连接处布置耗能梁段加固板。  相似文献   

8.
地震作用下,传统钢框筒结构难以实现强柱弱梁的设计理念,大震下柱端往往先于梁端出现塑性铰。针对这一问题提出了含可更换剪切型耗能梁段的钢框筒结构,即在裙梁中设置可更换的剪切型耗能梁段,大震作用下结构利用剪切型耗能梁段良好的弹塑性变形能力进行耗能,其余构件仍处于弹性状态或部分发展塑性。设计了一组算例结构,包括传统钢框筒结构和含可更换剪切型耗能梁段的钢框筒结构,采用SAP2000有限元分析软件对算例结构进行了弹性和弹塑性地震反应分析,对比了传统钢框筒结构和不同耗能梁段布置形式的含可更换剪切型耗能梁段的钢框筒结构在多遇地震、罕遇地震和极罕遇地震作用下的抗震性能和破坏模式。结果表明:在裙梁中设置剪切型耗能梁段对结构整体刚度的影响较小,含可更换剪切型耗能梁段的钢框筒结构改变了传统钢框筒结构的耗能机制,主要通过耗能梁段的剪切变形代替裙梁端部塑性铰耗能。罕遇地震作用下耗能梁段全部进入塑性耗能,震后仅需替换损伤严重的耗能梁段即可快速恢复结构的使用功能。极罕遇地震作用下,传统钢框筒结构达到极限状态,而含可更换剪切型耗能梁段的钢框筒结构的耗能梁段进一步发展塑性,其余构件保持弹性,结构具有足够的安全储备。  相似文献   

9.
传统钢框筒结构(FTS)耗能能力较差,震后难以快速恢复。为了提高传统钢框筒结构的耗能能力、经济性以及实现震后快速恢复,结合剪切型耗能梁段良好的塑性变形能力、高强钢强度高节省钢材的优势以及钢框筒结构较大的抗侧刚度,提出可更换剪切型耗能梁段-高强钢框筒结构(HSS-FTS)。为了研究和对比HSS-FTS与传统FTS的抗震性能,设计了2个不同耗能梁段布置方式的HSS-FTS算例结构以及1个FTS结构算例,采用SAP2000软件建立其有限元模型,通过推覆分析和非线性动力时程分析对有限元模型的抗震性能进行分析和对比。结果表明:结构的设计指标均能满足规范要求;在推覆过程中,HSS-FTS的耗能梁段均先屈服形成塑性铰,然后裙梁梁端逐渐屈服形成塑性铰,最后底层柱端形成塑性铰,结构达到极限状态,具有理想的屈服模式; FTS的塑性铰集中在中下部楼层的裙梁端部和个别柱端,增加了结构倒塌的风险;在大震作用下,所有算例结构的层间侧移角满足规范限值要求,且HSS-FTS比FTS具有更好的延性和耗能能力; HSS-FTS的塑性铰集中在耗能梁段,其余构件保持弹性,震后仅需更换损伤严重的耗能梁段即可实现结构功能的快速恢复。  相似文献   

10.
针对传统框筒结构延性差和震后修复困难的问题,提出了一种新型框筒结构形式——含可更换剪切型耗能梁段的组合钢框筒结构。为了体现这种结构的性能优势,利用SAP2000软件进行了静力弹塑性分析,将其与传统钢框筒结构(1个Q460钢框筒结构和2个Q345钢框筒结构)的承载力、层间位移角、楼层剪力、层刚度、剪力滞后效应、塑性铰分布和用钢量进行了对比,并给出一些设计建议。分析结果表明:该新型结构相对于Q345钢框筒结构可节省用钢量约15.5%;其翼缘框架剪力滞后效应与传统钢框筒结构相差不大;该新型结构的延性系数为1.73,相较于传统钢框筒结构的延性系数可提高26.3%;与传统钢框筒结构相比,该新型结构在中震和大震下可降低地震作用约20.1%和33.6%,并且将结构的塑性变形集中在可更换耗能梁段上,方便震后的识别和替换。在高烈度区,该新型结构的主体抗侧力构件钢材建议采用Q390~Q460,剪切型耗能梁段钢材建议采用LY160~Q345。  相似文献   

11.
针对传统钢框筒结构耗能能力不足及强震作用后结构修复难度大等问题,提出一种震后可快速恢复功能的可更换剪切型耗能梁段-高强钢框筒结构(HSS-FTS)。为研究该结构的滞回性能,采用ABAQUS建立了单层单跨HSS-FTS足尺结构有限元模型并对其进行非线性滞回分析,以耗能梁段的长度、加劲肋间距、翼缘宽厚比和腹板高厚比为参数,通过分析模型的承载力、刚度、延性和耗能等,研究以上参数对结构滞回性能的影响规律。结果表明:改变耗能梁段长度对结构承载力、刚度、延性和耗能能力影响较为显著;耗能梁段加劲肋间距满足现行抗规要求时,改变耗能梁段加劲肋间对结构滞回性能影响不大;当耗能梁段翼缘宽厚比减小时,结构的承载力、刚度和耗能能力略有增强,但对结构的延性影响较小;当腹板高厚比减小时,结构的承载力、刚度和耗能能力显著提高。在满足结构设计要求的前提下,为保证结构具有良好的滞回性能,基于本文的分析结果,建议耗能梁段长度取(0. 60~0. 87) Mp/Vp;耗能梁段加劲肋间距需满足抗规要求;耗能梁段翼缘宽厚比取4. 7~6. 7;耗能梁段腹板高厚比取21. 6~30. 2。  相似文献   

12.
将偏心支撑钢框架中的耗能梁段从框架梁中分离,作为可替换剪切连接件,不仅能达到将结构塑性变形集中于耗能梁段区域的目的,也能实现震后损坏耗能梁段易于替换的目标。为此,对9根不同参数的可替换剪切连接件进行循环加载试验,并对剪切连接件的滞回曲线、骨架曲线、承载力、塑性转角及刚度退化等进行分析。结果表明:可替换剪切连接件的滞回曲线饱满,性能稳定,塑性转角均满足对于耗能梁段极限塑性转角大于0.08rad的限值要求,具有良好的塑性性能,满足罕遇地震作用下的变形要求;承载能力和初始刚度随着长度、加劲肋间距的减小而增大;有焊接工艺孔的连接件刚度退化更加明显,塑性性能得到充分发挥,耗能能力良好;通过参数分析发现截面尺寸、长度比、加劲肋间距及焊接工艺孔构造等是影响剪切连接件抗震性能的主要因素。  相似文献   

13.
连梁是连接双肢剪力墙结构的主要构件,为了控制连梁在地震作用下进入塑性的部位,便于震后修复,可将连梁跨中部截面削弱,此段梁称作耗能梁段。地震作用下耗能梁段首先进入塑性耗能状态,为了使耗能梁段较早进入塑性耗能状态,提出了腹板开长圆孔型耗能梁段。通过ABAQUS有限元软件分析各参数下其刚度、承载力、延性、滞回性能及破坏形态,提出了其初始刚度和极限承载力计算方法。分析结果表明:长圆孔腹板耗能梁段具有良好的滞回性能,可实现屈曲前屈服;孔间柱长宽比β是影响耗能梁段承载力和滞回性能的决定因素,双列孔耗能梁段性能优于单列孔;考虑上、下翼缘对耗能梁段影响的初始刚度和极限承载力计算结果与有限元结果较为吻合。  相似文献   

14.
针对传统钢框筒结构地震耗能差、震后修复难度大和难以实现"强柱弱梁"的设计理念等问题,提出了一种新型高层钢结构体系——含可更换剪切型耗能梁段的高强钢框筒结构(HSS-FTS)。为研究耗能梁段布置方式对HSS-FTS抗震性能的影响,设计了30层的HSS-FTS系列算例并建立其有限元模型,依据提出的耗能梁段布置原则,给出了6种不同的耗能梁段布置方式。验证了有限元建模的合理性,对有限元模型分别进行反应谱分析、静力Pushover分析和动力弹塑性时程分析。分析结果表明:HSS-FTS改善了传统钢框筒结构的耗能能力,主要依靠耗能梁段塑性剪切变形耗散地震能量。不同的耗能梁段布置方式对结构的基底剪力、层间侧移角、承载能力、耗能能力、剪力滞后效应、塑性铰发展模式以及震后残余层间侧移角均有显著影响,但对结构的整体抗侧刚度影响较小。耗能梁段采用间隔布置3跨或连续布置5跨时,HSS-FTS在强震下的层间侧移角分布均匀,没有薄弱层出现,对震后残余层间侧移角的控制效果更为显著,且具有优良的耗能能力和理想的整体失效模式。  相似文献   

15.
通过拟静力试验,研究由跨中部消能梁段和两端非消能梁段组成的可更换钢连梁的抗震性能和震后可更换能力。试验共包括4个连梁试件,采用4种不同的消能梁段与非消能梁段连接方式,分别为端板-抗剪键连接、拼接板连接、腹板-螺栓连接、腹板-结构胶连接。试验结果表明:采用端板-抗剪键连接时,连梁的塑性变形和损伤集中在消能梁段,连梁的极限塑性转角可达0.06 rad,具有稳定的滞回耗能能力;采用拼接板连接或腹板-螺栓连接时,消能梁段剪切屈服,连接处摩擦型高强螺栓有不同程度的滑移,连梁的极限塑性转角也可达0.06 rad;采用腹板-结构胶连接时,连接处结构胶开裂导致连梁脆性破坏。在连梁转角为0.02 rad加载后对消能梁段进行更换,采用端板-抗剪键连接的试件更换时间最短,而腹板-螺栓连接的试件能在更大的残余转角时更换。此外,消能梁段在较大塑性剪切变形时伴有轴向变形,导致连梁试件承受较大轴力,连梁的轴力影响需要进一步研究。  相似文献   

16.
通过12个可更换钢连梁中消能梁段试件的拟静力试验,研究其抗震性能。试验参数包括腹板钢材类型、梁段长度、加劲肋布置方式和加载制度。试验结果表明:试件为剪切屈服型,破坏模式为加劲肋-腹板焊缝断裂或翼缘-端板焊缝断裂;试件的超强系数平均值为1.86,大于Popov等学者的建议值1.5;试件的极限塑性转角约为0.15 rad,远大于规范AISC 341-10规定的塑性变形限值0.08 rad;梁段腹板采用低屈服钢LY225代替Q235钢时,试件的极限塑性转角增大23%,试件的累积塑性转角增大52%;加劲肋单面布设或双面布设对试件的抗震性能影响不大,但加大加劲肋间距会导致腹板提前屈曲和试件承载力退化,建议低屈服钢消能梁段的加劲肋布置按照规范AISC 341-10和GB 50011-2010对一般消能梁段的规定。在剪切往复荷载作用下,试件的轴向位移由几何位移和塑性轴向变形两部分组成,试件的塑性轴向变形与其累积塑性转角成正比。  相似文献   

17.
长圆孔变型性高强螺栓节点抗震性能试验研究   总被引:3,自引:1,他引:2       下载免费PDF全文
带悬臂梁段全螺栓拼接的梁柱刚接节点,螺栓孔开成长圆形来提高节点的抗震性能。通过3个长圆孔变型性高强螺栓节点及1个对比节点试件的低周反复加载试验,研究了节点在地震作用下的承载力、延性变形能力、耗能能力、滞回性能,并与传统栓焊节点性能作对比。试验结果表明,这种节点的延性好于传统栓焊节点,通过螺栓在长圆孔中的滑移,可明显提高节点的延性变形能力。最终节点延性破坏,3个试件梁端塑性转角分别达到0.0500 rad、0.0560 rad、0.0523 rad,位移延性系数分别为7.14、5.03、4.51,而栓焊节点的塑性转角与位移延性系数仅能达到0.0204 rad与2.28,较大程度地改善了节点抗震性能。  相似文献   

18.
含可更换剪切型耗能梁段组合钢框筒可克服传统钢框筒延性差和震后修复困难的缺点,有助于其在较高烈度区的应用。高层钢框筒用轴压比和等效实膜筒法确定的构件截面尺寸较粗糙,需反复试算和调整。为方便所提出的组合钢框筒结构的初步设计和抗震性能研究,给出了该新型结构各构件截面尺寸的预估方法,并通过组合钢框筒算例利用双向地震弹塑性时程分析方法验证了所提出预估方法的有效性;同时比较了罕遇地震下钢框筒与组合钢框筒的层间位移角、楼层位移、基底剪力、剪力滞后效应、塑性铰分布。研究表明:所给出的构件尺寸预估方法具有较好的效果,能够实现罕遇地震下塑性变形集中于耗能梁段,便于震后修复和功能恢复;罕遇地震下,相对传统钢框筒,组合钢框筒的各楼层的弹塑性层间位移角、楼层位移均明显减小,且其水平主向的基底剪力峰值明显减小,具有良好的减震效果,此外其角柱的轴力绝对值明显降低,减小了剪力滞后效应。  相似文献   

19.
近年来,抗震设防目标逐渐从保护生命安全转向震后快速修复,可替换耗能梁段半刚性连接偏心支撑钢框架体系在震后通过替换新耗能梁,能够快速恢复其使用功能,因而得到了广泛关注。为了研究震后修复的偏心支撑钢框架的抗震性能及论证震后替换耗能梁段方法的可行性,首先对1个1∶2缩尺偏心支撑钢框架进行低周往复加载试验,然后更换新的耗能梁,再次对其进行低周往复加载试验。试验结果表明:修复替换后的试件与原试件相比,其滞回性能、承载力、延性系数、抗侧刚度和耗能性能虽不及原试件,但仍保留一定的承载力和良好的耗能性能;通过对层间位移角和耗能梁转角的分析,表明修复后的模型的整体变形能力以及其耗能梁转动能力依旧很好;对框架的失效模式和关键部位应变的分析,验证了更换耗能梁修复方法的可行性。  相似文献   

20.
针对传统钢框筒结构地震耗能差和震后修复难度大等问题,结合剪切型耗能梁段耗能能力强及震后易修复、钢框筒抗侧刚度大、高强钢强度高且节约材料的优点,提出一种新型高层钢结构形式——含可更换剪切型耗能梁段的高强钢框筒结构(HSS-FTS)。给出了HSS-FTS的初步设计方法和耗能梁段的布置原则。为比较HSS-FTS和传统钢框筒结构(FTS)的抗震性能,采用SAP2000各建立了一个40层的HSS-FTS和FTS有限元模型,验证了有限元建模的合理性,分别对两个结构进行反应谱分析和动力弹塑性时程分析。结果表明:多遇地震下,HSS-FTS和FTS的层间位移角、基底剪力、楼层剪力和剪力滞后效应无显著差别,HSS-FTS可以满足抗震规范层间位移角的限值要求。罕遇地震和超大震作用下,HSS-FTS的柱轴力分布相比FTS更为均匀,减小了结构的剪力滞后效应,HSS-FTS的塑性铰主要集中在耗能梁段处,改变了FTS的塑性铰发展机制,具有理想的破坏模式。在罕遇地震和超大震作用下,HSS-FTS的层间位移角相比FTS分别降低了11.98%和13.63%,可有效减小震后结构的残余变形,降低耗能梁段的更换难度。HSS-FTS改变了FTS的耗能机制,在罕遇地震和超大震作用下,其耗能量相比FTS分别提高了86.58%和151.09%,其耗能能力显著提升,有效降低了结构的水平地震作用,可减轻除耗能梁段外的非耗能构件受损程度,此种新型高层钢结构形式更易于震后修复与功能的快速恢复。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号