首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 78 毫秒
1.
针对钢箱梁正交异性板结构,建立有限元模型,并进行计算分析和实测对比。结果表明,相对于传统解析法,有限元法能较好地模拟钢箱梁正交异性板的实际受力状态;在钢箱梁正交异性板局部加载中,横向最不利荷载位置为加载在U肋之上,且轮位中心处应力值最大;纵向最不利荷载位置为横隔板中间处,最大应力值在中间轮外侧;钢箱梁正交异性板整体刚度较大,横向车辆增加时对应的应力增加并不明显。  相似文献   

2.
针对城轨钢箱梁正交异性桥面板关键构造疲劳应力问题,基于有限元方法提出正交化计算方法。首先计算典型正交异性钢桥面构造疲劳应力在城轨A型车和B型车作用下的纵向影响范围及最不利加载位置,并分析减振垫、吊点横隔板、轨下纵梁和道床板等参数的影响。然后根据大量工程实桥设计参数统计提出轨道交通桥梁正交异性板钢箱梁基准计算模型,并建立基准计算模型的空间有限元模型,通过数值计算得到顶板厚度、横隔板高度、横隔板间距、轨下纵梁高度及2种常见开孔形式等关键设计参数的影响系数,基于正交化方法提出不同设计参数条件下正交异性桥面板结构细节的疲劳应力计算公式。最后通过算例验证了正交化计算方法的可靠性和适用性。结果表明:城轨A型车在疲劳荷载作用下结构受力最不利; 轨下纵梁刚度对疲劳应力有显著影响。  相似文献   

3.
交通运输的迅速发展使得钢箱梁正交异性板的疲劳问题日趋突出。为研究设置支撑杆件对钢箱梁正交异性板疲劳性能的影响,制作试件进行室内试验,并采用有限元软件ABAQUS建立有限元模型,分析在无支撑杆件和有支撑杆件的情况下,钢箱梁正交异性板易疲劳开裂位置应力幅(最大荷载时的应力与无荷载时应力之差)的变化。试验和有限元对比结果表明:试验结果和有限元模拟结果吻合良好,支撑杆件的设置可将钢箱梁正交异性板U肋及T肋开槽处的应力幅减小约40%~60%,其中个别位置应力幅减小占比(无、有支撑时的应力幅差值与无支撑时应力幅之比)可达70%;支撑杆件的设置可将顶板跨中位置应力幅减小约20%~40%,其中个别位置应力幅减小占比可达50%。有限元参数分析结果表明:离支撑杆位置越近,开槽位置处的应力幅减小占比越大;随着支撑杆件直径的增大,应力幅减小占比增大,但增大幅度逐渐减小。合理使用支撑杆件能有效减小钢箱梁正交异性板易疲劳开裂部位的应力幅,可在较低的成本下减少钢箱梁正交异性板疲劳破坏的发生,提高其疲劳寿命。  相似文献   

4.
针对某在建大跨度斜拉桥正交异性板公路桥面,对焊接制造重要部位进行疲劳试验研究。分别得出不同构造细节的S—N曲线方程,然后与设计曲线进行对比,对实际结构的焊接细节疲劳性能进行评价,计算分析结果以及疲劳试验所得的参数可为工程的进一步开展提供依据。  相似文献   

5.
吴臻旺  郑凯锋  苟超  崔英杰 《钢结构》2010,25(12):17-21
选取公路悬索桥正交异性板钢箱梁典型结构,根据顶板厚度、主梁高度、横隔板间距以及吊杆纵向间距内横隔板节间数等4个参数对结构进行研究。用有限元法试算确定最不利荷载位置后,分别对各结构的节段模型进行加载计算,研究钢箱梁桥面的顶板纵向最大拉应力与最大压应力、顶板横向最大拉应力与最大压应力、纵肋纵向最大拉应力与最大压应力,并由计算结果推导出公路悬索桥正交异性板钢箱梁桥面局部应力简化计算公式,初步验证该公式具有一定的计算精度与简便性。  相似文献   

6.
正交异性板的极限承载力分析   总被引:4,自引:0,他引:4  
王应良  强士中 《钢结构》1999,14(4):46-48
采用平面壳单元和荷载增量法,对采用U型加劲肋的正交异性板考虑几何和材料非线性进行极限承载力分析,得到的结论有助正交异性极的设计。  相似文献   

7.
8.
《低温建筑技术》2020,(6):69-72
以正交异性钢桥面板横隔板切口疲劳应力为研究对象,采用六种横隔板切口形式,以某钢箱梁桥为例,利用abaqus有限元分析软件分别建立三维板壳有限元模型。建模时对横隔板切口部位的网格进行细化,以确保计算结果足够精确。分析在最不利荷载作用下,横隔板切口部位产生的面内外应力对疲劳应力的影响。结果表明影响横隔板切口位置疲劳性能的主应力主要由面内应力决定的;日本采用的横隔板切口形式的切口尺寸最小,该细节受到到的面内应力最小,疲劳性能最好,为正交异性钢桥面板横隔板设计提供参考。  相似文献   

9.
迟啸起  张海芳 《山西建筑》2012,(22):179-180
对某大桥正交异性钢桥面板的纵肋—面板焊接接头进行了热点应力法实体单元有限元分析,通过ABAQUS的模拟分析结果表明,轮压对于正交异性板钢桥面板的应力影响范围很小,对纵肋—面板焊接接头的应力提升不明显,接头非线性应力分布在距离焊趾0.4t的范围内,应力分布特点与以往针对平板焊接结构的热点应力研究成果相吻合。  相似文献   

10.
吉伯海  田圆  傅中秋  徐汉江 《工业建筑》2014,(5):128-131,153
建立全桥模型和简化的钢桥面板局部节段模型,通过子模型法插值得到横隔板疲劳细节模型的边界条件,计算不同车轮横向分布对应的疲劳细节局部应力,研究横隔板参数变化对横隔板疲劳细节损伤的影响。结果表明:混合单元模型与钢桥面板简化模型对应的应力幅相差小于5.0%,采用钢桥面板简化模型分析横隔板疲劳细节受力简单合理。横隔板疲劳细节在车轮偏离中心位置150 mm时应力幅最大,随着车轮偏离中心位置距离的增大,应力幅下降明显。横隔板间距增大,横隔板疲劳细节应力幅上升,增加横隔板厚度可有效改善其疲劳受力性状。  相似文献   

11.
Accurate evaluation of the effect of possible damage in critical components on the dynamic characteristics of a structure is of critical importance in developing a robust structural damage identification scheme for a long-span cable-stayed bridge. The strategies of finite element (FE) modelling of a long-span cable-stayed bridge for multi-scale numerical analysis are first investigated. A multi-scale model of the Runyang cable-stayed bridge is then developed, which is essentially a multi-scale combination of a FE model for modal analysis of the entire bridge structure and FE sub-models for local stress analysis of the selected locations with respect to the substructuring method. The developed three-dimensional global-scale and local-scale FE models of Runyang cable-stayed bridge achieve a good correlation with the measured dynamic properties identified from field ambient vibration tests and stress distributions of a steel box girder measured from vehicle loading tests, on the basis of which the effectiveness of some damage location identification methods, including a modal curvature index, a modal strain energy index and a modal flexibility index, are evaluated. The analysis results show that the effect of the simulated damage in various components of the steel box girder on the dynamic characteristics of a long-span cable-stayed bridge should be properly considered in structural damage analyses using multi-scale numerical computation.  相似文献   

12.
朱纯海  李德建 《山西建筑》2006,32(5):258-259
三汊矶大桥首次采用横竖板结合型锚箱,构造新颖独特。采用空间有限元方法分析了锚箱的应力分布状况,并对腹板的局部稳定做了检算,对锚箱的优化提出了建议。  相似文献   

13.
徐科英 《山西建筑》2012,38(16):197-198
针对横隔板在轮载作用下的受力特性进行了研究,选取一个节间的钢箱梁节段建立空间模型进行有限元分析,结果表明在设计荷载作用下,横隔板除开孔处会出现应力集中外,其他应力水平均满足规范要求,在钢箱梁设计中应合理开孔并控制开孔尺寸。  相似文献   

14.
温度应力是影响大跨桥梁结构全寿命性能的主要因素之一,合理的温度场分布模型是准确计算结构温度应力的基础。基于润扬大桥悬索桥结构健康监测系统的监测数据,详细分析润扬大桥悬索桥扁平钢箱梁为期一年的实测温度结果,得出横截面不同位置温度随时间的变化规律,提出扁平钢箱梁同一横截面上不同测点之间温差的概率分布模型,确定不同横截面具有一定重现期的温差标准值,总结用于温度应力计算的横截面温差模式。分析结果表明:①扁平钢箱梁的温度场具有明显的季节特征;②横截面各个测点之间的正温差和负温差均可以通过Weibull分布函数和正态分布函数的加权和来描述其概率分布;③同一横截面上不同测点之间有不同的温差标准值,但不同截面对应位置的温差标准值十分接近;④扁平钢箱梁顶板存在三种不同的横向温差模式。研究结果可为大跨悬索桥全寿命评估提供参考。  相似文献   

15.
针对适于公路钢箱梁正交异性板桥面局部应力计算的车辆轮轴荷载,分析中国、美国、加拿大、日本、英国和欧洲桥梁设计相关规范之间的差异。选择8种规范荷载,根据车轮触地面积,考虑50mm厚铺装层对荷载的扩散效应,确定各规范荷载的加载面积。选择钢箱梁典型结构,计算各荷载作用下桥面局部应力,对吊索中点加载模式,比较该位置顶板顶、底面横向应力和纵肋底面纵向应力;对吊索支点加载模式,比较顶板顶、底面纵向应力。最后,不考虑铺装层扩散效应,进一步计算比较各荷载作用下的上述应力。研究表明,按照我国公路I级荷载计算所得桥面局部应力偏低,加载面积的形状和大小对桥面局部应力影响明显。  相似文献   

16.
针对传统比拟杆法仅能分析等截面箱梁剪力滞效应的不足,重新推导变截面箱梁加劲杆等效面积及剪力滞效应微分方程,以有机玻璃悬臂梁模型的试验结果检验该文算法的正确性,讨论箱梁梁高、腹板厚度变化对悬臂箱梁剪力滞系数和正剪力滞区段长度的影响,通过分析箱梁顶板和腹板内剪力流沿跨长的分布规律揭示变截面箱梁剪力滞效应弱化的原因。研究发现:悬臂箱梁梁高和腹板厚度的变化会减弱其剪力滞效应,且剪滞效应弱化的原因在于变截面箱梁腹板内剪应力水平的降低;箱梁顶板内水平剪力流沿跨长先增大后减小的变化导致了悬臂箱梁正、负剪力滞现象,同等跨径下变高度悬臂箱梁的正剪力滞区段长度会显著增加,但其剪滞系数将明显减小;工程设计中可以通过调整箱梁梁高和腹板厚度沿顺桥向的变化趋势,尽量让箱梁腹板剪力流水平沿桥跨方向保持不变,避免腹板剪力流水平变化过快以最大程度地减弱箱梁剪力滞效应。  相似文献   

17.
采用荷载试验结合有限元分析的方法是一种重要的桥梁安全性评估手段。以实际工程为背景,对一种采用较少的斜拉杆钢箱梁式人行天桥进行了荷载试验及有限元分析。首先通过理论分析和有限元模拟,确定了现场静载试验的加载工况、加载与卸载的过程与量级以及主控制截面和截面中的测点空间位置分布。在试验荷载作用下测定人行天桥控制截面的应力、挠度或位移值,并将测试结果与有限元分析结果进行对比,以验证是否符合规范与设计要求。最后综合评估了该人行天桥的安全性能,为维修加固和后续使用维护提供依据。  相似文献   

18.
为解决波形钢腹板PC组合箱梁在纯扭作用下的全过程受力问题,基于软化薄膜元模型(SMMT),结合该桥型的结构及受力特点,建立了一组充分满足平衡条件、变形协调条件及材料本构关系的方程组,根据波形钢腹板未屈服与已屈服两种情况,方程中分别以剪力流连续与剪应变连续来描述钢腹板与混凝土翼板之间的协调关系。在此基础上,给出了求解上述方程组的程序框图,由此建立了针对波形钢腹板PC组合箱梁的纯扭全过程分析模型。对8根已有试件进行验证,结果表明:模型预测的全过程扭矩-扭率曲线与试验曲线吻合良好,包括开裂前的上升段及达到极限状态后的下降段,同时二者在开裂和极限状态下的扭矩与扭率值也非常接近,由此证明了该模型的有效性与准确性。  相似文献   

19.
正交异性钢桥面铺装层疲劳寿命的断裂力学分析   总被引:3,自引:0,他引:3  
计算和分析正交异性钢桥面铺装层表面裂缝应力强度因子,在此基础上应用Paris扩展公式预测铺装层疲劳寿命。将奇异单元布置在铺装层表面裂缝前沿,建立正交异性钢桥面系三维断裂力学有限元模型,计算铺装层表面裂缝的应力强度因子;分析裂缝应力强度因子随轴载作用位置的变化规律,确定了带裂缝铺装层轴载作用的最不利荷位;以最不利荷位作为轴载作用的标准荷位,计算应力强度因子随裂缝扩展深度的变化,并数值拟合得到了应力强度因子与裂缝深度的关系式;将应力强度因子的深度关系式代入Paris公式,积分得到铺装层的疲劳寿命。计算结果表明,基于钢桥面铺装层带裂缝工作的事实,应用断裂力学方法预测钢桥面铺装层疲劳寿命是可行的。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号