首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 125 毫秒
1.
综述了石墨烯基TiO2光催化剂复合材料如石墨烯-TiO2、氧化石墨烯-TiO2和还原氧化石墨烯-TiO2的最新研究进展。概述了这些材料的制备方法、相关的基本原理和石墨烯基复合材料在污染物光催化降解方面和水分解制氢的应用。  相似文献   

2.
邢阳阳  李秋叶  杨建军 《功能材料》2012,43(16):2126-2130
Ag-基等离子体共振光催化剂因其特殊的物理化学性能,在光催化降解污染物、分解水和生物传感器等方面受到了广泛关注。尤其是Ag/AgX(X=Cl、Br、I)类等离子体光催化剂,由于其在可见光催化降解有机污染物中的优异表现,成为近年来可见光催化领域的研究热点。综述了近年来Ag-基等离子体共振光催化剂的研究进展,并深入探讨了其光催化反应机理。Ag-基等离子体共振光催化剂合成方法简单易行,原料成本低,光催化效率高,必将在应用光催化领域具有良好的发展前景。  相似文献   

3.
潘振华  蔡启舟 《材料导报》2013,27(15):25-29,36
利用太阳能驱动光催化反应制备氢气成为了目前的研究热点。综述了近年来在可见光下光催化分解水制氢的研究进展,着重介绍了固溶体光催化剂、非金属化合物型光催化剂、Z型光催化系统及新型助催化剂的最新研究成果,并展望了光催化制氢的发展。  相似文献   

4.
金属离子掺杂、非金属离子掺杂、离子注入以及染料光敏化等方法都可不同程度地实现TiO2可见光化,其中非金属掺杂TiO2可见光催化剂其可见光活性是不以损失UV光激发效率而可以独立存在的.本文重点介绍了近年来非金属掺杂修饰改性TiO2光催化剂及本课题组在染料敏化半导体光催化制氢研究方面所取得的一些研究成果,对非金属离子改性TiO2光催化剂的效能进行了整理分类.构建以天然海水和盐湖卤水为应用背景的无电子给体的无机水盐廉价制氢反应体系,是光催化走向实用化的一个新探索.本文回顾了无机水盐制氢反应体系构建方面的研究成果,并对未来光催化分解水的研究工作进行了展望.  相似文献   

5.
TiO2光催化剂的掺杂改性研究进展   总被引:1,自引:0,他引:1  
TiO2光催化剂以其优异的物理化学特性和光催化活性,在环境污染治理和光催化分解水制氢等方面已有较为广泛的研究和应用.综述了近年来过渡金属掺杂、稀土金属掺杂和非金属掺杂TiO2光催化剂的研究进展,比较了金属掺杂和非金属掺杂的优缺点,指出了TiO2光催化技术存在的问题及下一步的发展方向.  相似文献   

6.
太阳能光催化分解水是实现绿色、高效生产可持续能源氢气的重要途径之一,而光催化剂的设计和开发在这一过程中起着关键作用。常用的传统半导体光催化剂目前面临的主要挑战包括阳光利用率不足、载流子易复合、活性位点暴露不足等问题,因此,开发新型、高效光催化剂的研究显得尤为重要。具有类半导体行为的金属有机框架(metal-organic frameworks, MOFs)材料,由于其超高的比表面积、孔隙率及高规整度,近年来在光催化产氢领域受到越来越广泛的关注。介绍了MOFs材料的结构特点及在光催化制氢领域中应用的独特优势,基于光催化机理从改善光吸收、促进电荷分离和加速表面反应几个方面,总结了提高MOF基光催化剂活性的策略,并对其应用前景进行了展望。  相似文献   

7.
在大气环境下,寡层黑磷(简称为磷烯)很容易被氧化,因此阻碍了其在光催化太阳能转换领域的应用.相关的一些保护方法,比如在磷烯表面引入保护层、表面配位、P–C共价官能化等方法可以维持磷烯的稳定性,使其免受氧化降解,可是这些方法对磷烯的催化活性位点造成了堵塞,因此不可避免地降低了其光催化活性.在本项工作中,我们开发了一种在磷烯表面引入P–H共价键的策略,表面P–H共价键的引入既能维持磷烯在大气环境下的稳定性,又能实现高效光催化分解水产H2.相关实验和DFT计算表明,磷烯表面约5 mol%的磷原子参与了P–H共价键的形成,在热力学和动力学两方面同时抑制了磷烯的氧化反应.磷烯的表面氢化策略有希望促进磷烯在光催化领域的实际应用.  相似文献   

8.
近年来,含有本征电场的二维半导体材料因拥有抑制光生载流子复合的潜在能力而受到了光催化领域研究人员的广泛关注.在本文中,我们采用第一性原理计算方法,报道了一类具有本征极性的新型二维半导体材料一单层铟-VA族化合物(ML-InXs;X=P、As和Sb),并探究了它们作为光催化剂分解水的可能.我们系统地研究了ML-InXs的几何结构、电子结构和光学性质,发现它们具有优异的结构稳定性、合适的带隙和带边位置、出色的载流子迁移率和较广的光吸收范围,因此可以成为水分解反应的优秀光催化剂.更重要的是,在ML-InXs中由本征偶极矩产生的电场可抑制光生电子-空穴对复合,大大提高了光催化反应过程中的能量转换效率.此外,我们发现应变工程可以有效地调节ML-InXs的带隙和光吸收,并显著提高它们分解水时的太阳能转化效率.我们的研究进一步加深了人们对具有本征电场的二维光催化剂的理解,并可为未来设计出具有优异性能的水分解或其他重要化学反应的光催化剂提供理论指导.  相似文献   

9.
光催化技术是一种清洁、绿色的先进氧化技术,在可见光照射下,可以将各种有机污染物分解为二氧化碳和水等小无机分子。碘氧化铋(BiOI)作为一种新型光催化剂,具有适宜的禁带宽度和独特的层状结构,在光催化降解水体中的染料、抗生素、酚类物质等方面具有广阔的应用前景。综述了BiOI的制备工艺、改性方法及其在光催化降解污染废水有机物中的应用。  相似文献   

10.
TiO2光催化活性向可见光区拓展的研究进展   总被引:9,自引:0,他引:9  
童海霞  陈启元  胡慧萍  尹周澜  李洁 《功能材料》2005,36(9):1307-1311,1315
TiO2光催化剂可用于光分解有机污染物,组装太阳能电池,光分解水制氢气或氧气等领域。本文对可见光响应的TiO2光催化剂国内外研究进行了综述,概述了采用敏化,掺杂等方法可使二氧化钛光催化活性从紫外光区拓展到可见光区,并对未来的研究方向进行了展望。  相似文献   

11.
《工程(英文)》2021,7(7):991-1001
Semiconductor photocatalysis is a potential pathway to solve the problems of global energy shortage and environmental pollution. Black phosphorus (BP) has been widely used in the field of photocatalysis owing to its features of high hole mobility, adjustable bandgap, and wide optical absorption range. Nevertheless, pristine BP still exhibits unsatisfactory photocatalytic activity due to the low separation efficiency of photoinduced charge carriers. In recent years, the construction of heterostructured photocatalysts based on BP has become a research hotspot in photocatalysis with the remarkable improvement of photoexcited charge-separation efficiency. Herein, progress on the design, synthesis, properties, and applications of BP and its corresponding heterostructured photocatalysts is summarized. Furthermore, the photocatalytic applications of BP-based heterostructured photocatalysts in water splitting, pollutant degradation, carbon dioxide reduction, nitrogen fixation, bacterial disinfection, and organic synthesis are reviewed. Opportunities and challenges for the exploration of advanced BP-based heterostructured photocatalysts are presented. This review will promote the development and applications of BP-based heterostructured photocatalysts in energy conversion and environmental remediation.  相似文献   

12.
Photocatalytic water splitting into hydrogen and oxygen is a method to directly convert light energy into storable chemical energy, and has received considerable attention for use in large-scale solar energy utilization. Particulate semiconductors are generally used as photocatalysts, and semiconductor properties such as bandgap, band positions, and photocarrier mobility can heavily impact photocatalytic performance. The design of active photocatalysts has been performed with the consideration of such semiconductor properties. Photocatalysts have a catalytic aspect in addition to a semiconductor one. The ability to control surface redox reactions in order to efficiently produce targeted reactants is also important for photocatalysts. Over the past few decades, various photocatalysts for water splitting have been developed, and a recent main concern has been the development of visible-light sensitive photocatalysts for water splitting. This review introduces the study of water-splitting photocatalysts, with a focus on recent progress in visible-light induced overall water splitting on oxynitride photocatalysts. Various strategies for designing efficient photocatalysts for water splitting are also discussed herein.  相似文献   

13.
Abstract

Photocatalytic water splitting into hydrogen and oxygen is a method to directly convert light energy into storable chemical energy, and has received considerable attention for use in large-scale solar energy utilization. Particulate semiconductors are generally used as photocatalysts, and semiconductor properties such as bandgap, band positions, and photocarrier mobility can heavily impact photocatalytic performance. The design of active photocatalysts has been performed with the consideration of such semiconductor properties. Photocatalysts have a catalytic aspect in addition to a semiconductor one. The ability to control surface redox reactions in order to efficiently produce targeted reactants is also important for photocatalysts. Over the past few decades, various photocatalysts for water splitting have been developed, and a recent main concern has been the development of visible-light sensitive photocatalysts for water splitting. This review introduces the study of water-splitting photocatalysts, with a focus on recent progress in visible-light induced overall water splitting on oxynitride photocatalysts. Various strategies for designing efficient photocatalysts for water splitting are also discussed herein.  相似文献   

14.
The properly designed semiconductor photocatalysts are promising materials for solving the current serious energy and environmental issues because of their ability of using sunlight to stimulate various photocatalytic reactions. Especially, the constructed direct Z-scheme photocatalysts, mimicking the natural photosynthesis system, possess many merits, including increased light harvesting, spatially separated reductive and oxidative active sites, and well-preserved strong redox ability, which benefit the photocatalytic performance. This review concisely compiles the recent progress in the fabrication, modification, and major applications of the direct Z-scheme photocatalysts; the latter include water splitting, carbon dioxide reduction, degradation of pollutants, and biohazard disinfection. It finishes with a brief presentation of future challenges and prospects in the development of direct Z-scheme photocatalytic systems.  相似文献   

15.
With the ambition of solving the challenges of the shortage of fossil fuels and their associated environmental pollution, visible-light-driven splitting of water into hydrogen and oxygen using semiconductor photocatalysts has emerged as a promising technology to provide environmentally friendly energy vectors. Among the current library of developed photocatalysts, organic conjugated polymers present unique advantages of sufficient light-absorption efficiency, excellent stability, tunable electronic properties, and economic applicability. As a class of rising photocatalysts, organic conjugated polymers offer high flexibility in tuning the framework of the backbone and porosity to fulfill the requirements for photocatalytic applications. In the past decade, significant progress has been made in visible-light-driven water splitting employing organic conjugated polymers. The recent development of the structural design principles of organic conjugated polymers (including linear, crosslinked, and supramolecular self-assembled polymers) toward efficient photocatalytic hydrogen evolution, oxygen evolution, and overall water splitting is described, thus providing a comprehensive reference for the field. Finally, current challenges and perspectives are also discussed.  相似文献   

16.
《工程(英文)》2017,3(3):365-378
Photocatalytic water splitting, which directly converts solar energy into hydrogen, is one of the most desirable solar-energy-conversion approaches. The ultimate target of photocatalysis is to explore efficient and stable photocatalysts for solar water splitting. Tantalum (oxy)nitride-based materials are a class of the most promising photocatalysts for solar water splitting because of their narrow bandgaps and sufficient band energy potentials for water splitting. Tantalum (oxy)nitride-based photocatalysts have experienced intensive exploration, and encouraging progress has been achieved over the past years. However, the solar-to-hydrogen (STH) conversion efficiency is still very far from its theoretical value. The question of how to better design these materials in order to further improve their water-splitting capability is of interest and importance. This review summarizes the development of tantalum (oxy)nitride-based photocatalysts for solar water spitting. Special interest is paid to important strategies for improving photocatalytic water-splitting efficiency. This paper also proposes future trends to explore in the research area of tantalum-based narrow bandgap photocatalysts for solar water splitting.  相似文献   

17.
Abstract

Renewable hydrogen production is a sustainable method for the development of next-generation energy technologies. Utilising solar energy and photocatalysts to split water is an ideal method to produce hydrogen. In this review, the fundamental principles and recent progress of hydrogen production by artificial photosynthesis are reviewed, focusing on hydrogen production from photocatalytic water splitting using organic–inorganic composite-based photocatalysts.  相似文献   

18.
利用可见光催化分解水制氢的研究进展   总被引:1,自引:0,他引:1  
简述了利用可见光催化分解水制氢的基本原理及该领域的最新研究进展.由能带模型概述了设计可见光响应催化剂的3种方案,重点介绍了元素掺杂类型光催化剂、氮氧/硫氧化物光催化剂、固溶体催化剂等可见光催化分解水体系.阐述了该课题的重要意义及面临的巨大挑战,提出了未来该领域需要加强研究的若干问题.  相似文献   

19.
Recent years have seen a renewed interest in the harvesting and conversion of solar energy. Among various technologies, the direct conversion of solar to chemical energy using photocatalysts has received significant attention. Although heterogeneous photocatalysts are almost exclusively semiconductors, it has been demonstrated recently that plasmonic nanostructures of noble metals (mainly silver and gold) also show significant promise. Here we review recent progress in using plasmonic metallic nanostructures in the field of photocatalysis. We focus on plasmon-enhanced water splitting on composite photocatalysts containing semiconductor and plasmonic-metal building blocks, and recently reported plasmon-mediated photocatalytic reactions on plasmonic nanostructures of noble metals. We also discuss the areas where major advancements are needed to move the field of plasmon-mediated photocatalysis forward.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号