首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 406 毫秒
1.
CALPHAD结合关键实验可以探究能源材料体系的多元多相反应.介绍了4个基于不同应用背景的合金体系的评估工作:液相烧结的SiC(LPSSiC)体系、转换型锂离子电池体系、掺杂Cr的TiAl基合金体系以及Zr基热障涂层体系.研究结果显示:CALPHAD热力学计算结果可以用于指导关键实验设计,从而进一步明确研究体系的相图和热力学性质.获得的实验数据又可以作为精炼CALPHAD模型和改进模型参数的输入条件.精炼后的模型参数构成的热力学数据库可用于计算各种相图(包括等温截面、垂直截面、可以用来计算可信的相图(等温截面、垂直截面及波动图)及液相面投影图.  相似文献   

2.
面向海洋、航空、核能等重大工程中涂层的表面损伤与防护研究,精确的相图与相变信息是高效研发高性能可靠涂层材料的关键.但是,涂层制备一般是非平衡的成相过程,涂层在苛刻环境中服役处于动态相变过程,因此,基于热力学平衡的传统相图计算CALPHAD(CALculation of PHAse Diagrams)方法不再适用于涂层材...  相似文献   

3.
材料设计已成为各国争相发展的技术之一,作为材料制备的索骥图,相图及其热力学参数的计算方法受到了越来越多的重视.概述了相图及热力学研究的进展,对比分析了经典的热力学计算方法和前沿研究,并着重分析了目前流行的第一性原理计算和CALPHAD方法相结合的计算进展,提出并验证了基于第一性原理的带温度参数的热力学数据计算方法,展望了此类方法对预测材料物性和冶金设计优化的前景.  相似文献   

4.
相图计算的研究进展   总被引:4,自引:1,他引:3  
相图计算已经成为材料设计、冶金和化工等过程模拟的重要工具,越来越受到人们的重视.概述了相图计算(CALPHAD)的发展现状,重点强调了相图计算中描述有序相的模型、量子力学第一性原理与相图计算方法的结合和热力学与动力学的结合,并简要预测了今后相图计算的发展方向.  相似文献   

5.
用于研发硬质合金的集成计算材料工程是将微观(10~(-10)10~(-8)m)、细观(10~(-8)10~(-4)m)、介观(10~(-4)10~(-2)m)和宏观(10~(-2)10 m)等多尺度计算模拟和关键实验集成到硬质合金设计开发的全过程中,通过成分-工艺-结构-性能的集成化分析,把硬质合金的研发由传统经验式提升到科学设计,从而大大加快硬质合金材料的研发速度,降低研发成本.本文详细阐述了第一性原理计算、CALPHAD方法、相场模拟和有限元模拟等计算模拟方法及各种微结构表征和性能测定的实验方法,论述了其在硬质合金研发中所发挥的具体作用.基于集成计算材料工程,提出了从用户需要、设计制备和工业生产的3个层面研发硬质合金的具体框架.通过应用实例,展示了集成计算材料工程在新型硬质合金研发中的强大功能,为新型硬质合金的设计和开发提供了新模式.  相似文献   

6.
本研究利用CALPHAD方法,液相和端际固溶体相的自由能采用亚规则溶体模型来描述,金属间化合物相的自由能用亚点阵模型来描述,并结合相平衡实验结果和热力学性质的实验信息,对Nb-Al-Cr-Hf-Mo-Si-Ti体系合金相图进行了热力学优化与计算.计算结果与实验值取得了较好的一致性,得到一组自洽合理的热力学参数.本研究结合该体系相关合金相图热力学计算的文献报道,建立了Nb-Al-Cr-Hf-Mo-Si-Ti体系合金相图热力学数据库.该热力学数据库将为铌基高温合金材料研究与开发提供重要的基础热力学参数.  相似文献   

7.
本研究利用CALPHAD方法,液相和端际固溶体相的自由能采用亚规则溶体模型来描述,金属间化合物相的自由能用亚点阵模型来描述,并结合相平衡实验结果和热力学性质的实验信息,对Nb-Al-Cr-Hf-Mo-Si-Ti体系合金相图进行了热力学优化与计算.计算结果与实验值取得了较好的一致性,得到一组自洽合理的热力学参数.本研究结合该体系相关合金相图热力学计算的文献报道,建立了Nb-Al-Cr-Hf-Mo-Si-Ti体系合金相图热力学数据库.该热力学数据库将为铌基高温合金材料研究与开发提供重要的基础热力学参数.  相似文献   

8.
TiAlN基涂层具有良好的力学和抗氧化性能,因此,在典型的机械部件,如航空发动机压气机叶片、切削刀具和精密模具等表面防护领域得到广泛应用。然而,随着机械部件性能要求的不断提升,涂层的服役条件愈加苛刻,防护涂层的可靠性和服役寿命受到更为严峻的挑战。在TiAlN涂层中添加前过渡族元素以提高涂层的综合性能是有效提高涂层防护效果、延长涂层使用寿命的重点研究方向之一,而元素的选取和成分的确定对涂层的结构优化和性能提升至关重要。本工作从TiAlN涂层材料出发,结合相图详细论述前过渡族元素X(X=V,Cr,Y,Zr,Nb,Mo,Hf,Ta,W)的添加对TiAlN涂层结构和性能的影响,进而探讨TiAlXN涂层的成分-结构-性能关系。针对在TiAlN涂层中添加前过渡族元素面临的缺乏相图计算辅助、四元涂层在极端环境下的失效行为、涂层制备设备成本较高等问题,提出结合相场模拟开发TiAlXN体系四元相图、发展TiAlN基高熵涂层以及结合气相沉积技术的优势大力发展涂层制备技术等展望。  相似文献   

9.
本研究采用合金法、电子探针显微分析仪(EPMA)和X射线衍射(XRD)技术,对Co-Ni-W三元系在1 000℃和1 200℃下的等温截面相图进行了实验测定。结合本研究和已报道的相平衡实验信息,基于CALPHAD (Calculation of phase diagrams)方法,对Co-Ni-W三元系相图进行了热力学优化与计算,获得了自洽性良好的热力学参数,计算结果与实验数据取得了良好的一致性。  相似文献   

10.
高通量材料实验旨在利用较少的实验次数快速获得成分-物相-结构-性能之间关系, 筛选出组分最优的材料体系, 目前已在超导材料、荧光材料以及巨磁阻材料等方面有较多应用。热电材料是可以实现热能和电能直接相互转换的功能材料, 在温差发电和废热利用等领域有着重要的应用价值, 但热电材料的传统实验制备与表征方法存在着实验周期长和效率低等问题。因此, 将高通量实验的方法和理念引入新型热电材料的研发和优化具有重要的理论和实际意义。本文主要总结和梳理了现有在热电材料实验研究中具有较好应用前景的高通量实验制备与表征技术, 包括高通量样品制备、成分-结构高通量表征、电-热输运性能高通量表征等, 并分析了各高通量实验技术在实验热电材料研究中的优势和局限性, 希望为今后热电材料高通量实验优化和筛选提供一定的参考。  相似文献   

11.
A method to model the metastable phase formation in the Cu–W system based on the critical surface diffusion distance has been developed. The driver for the formation of a second phase is the critical diffusion distance which is dependent on the solubility of W in Cu and on the solubility of Cu in W. Based on comparative theoretical and experimental data, we can describe the relationship between the solubilities and the critical diffusion distances in order to model the metastable phase formation. Metastable phase formation diagrams for Cu–W and Cu–V thin films are predicted and validated by combinatorial magnetron sputtering experiments. The correlative experimental and theoretical research strategy adopted here enables us to efficiently describe the relationship between the solubilities and the critical diffusion distances in order to model the metastable phase formation during magnetron sputtering.  相似文献   

12.
The diffusion-multiple approach can be used to map phase diagrams at an efficiency orders of magnitude faster than the conventional equilibrated alloy method. This paper addresses a concern about the reliability of the results, especially whether the data obtained from diffusion multiples can produce reliable equilibrium phase diagrams. The following topics will be discussed: (a) establishment of local equilibrium at the phase interfaces, (b) X-ray interaction volume vs. thickness of the phases (microprobe related issues), (c) reliability of phase diagrams from equilibrated alloys, (d) usefulness of electron backscatter diffraction, (e) impurity-induced stabilization of metastable phases, and, (f) missing phase situations. A direct comparison of several ternary systems obtained from both diffusion multiples and equilibrated alloys was made. The good agreement between them clearly demonstrates the reliability of phase diagrams determined from diffusion multiples.  相似文献   

13.
Abstract

Reactive sputter deposition is a widely used glow discharge process for growing high melting point coatings near room temperature, and metastable and multiphase structures not attainable in bulk material grown under conditions of thermodynamic equilibrium. It is therefore ideally suited for growing refractory metal oxide coatings. In this study, ‘phase maps’ are constructed for the sputter deposition of the refractory metal oxides of Nb, Y, and Zr. These diagrams interrelate process parameters, the growth environment, and metallurgical phase in the growth regime of near room substrate temperature, low surface diffusion, and sticking coefficient of unity. Phase boundaries are discussed in terms of: (i) the fractional flux of metal atoms and metal oxide molecules to the substrate; (ii) a complete oxide layer at the metal target surface; (iii) oxygen species in the plasma available for reaction at the substrate.

MST/1693  相似文献   

14.
PVD – A success story with a future PVD coatings in the range of a few nanometers up to some microns have become state of the art in engineering technology. PVD coatings can be found anywhere in our everday lives. They are used in data storage mediums such as CDs or DVDs. Car or architectural glasses are improved by thermal insulation coatings. A diffusion barrier is achieved via PVD coatings at food packaging. For decorative aspects sham jewelery and accessoires are coated as well as fittings. In the last three decades PVD coatings have been established in a variety of technical applications acquiring wear protection and/or friction reduction. First, coatings for tools have been developed, later on for components as well. So, in the past lots of experiences have been made not only in coating development, but likewise in methodical product design. By contrast, the surface has not yet been regarded as construction element. Here the knowledge is just at the beginning. The achieved performance of coated components can be improved drastically if the tribological system consisting of coating, substrate and intermediate material is designed for one single application with regard to the macro‐ and micro geometry. An exemplary application derived from the collaborative research center (SFB 442) “Environmentally friendly tribosystems” at the RWTH Aachen university is discussed. Results of fundamental research and their way into industrial applications are presented. The research development is reflected with regard to the development of the industrial PVD market. Regarding a process chain for the exemplary application the development method of surface technology is explained beginning with the production up to field testing of a new product.  相似文献   

15.
Hard materials and refractory materials, such as diamond, are generally stable and have high melting points. The phase diagrams of these materials seem to be relatively simple. However, recent progress of high-pressure experiments along with theoretical predictions by density-functional theoretical (DFT) methods has disclosed the richness of new structures, which has attracted the attention of material researchers. An elemental crystal of boron is an extreme case; there are many polymorphic modifications, and it is only recently that the phase diagram has been established. In the course of studying the phase diagram, a new structure of the \(\gamma \) -phase has been discovered. Now, we have to admit that hard materials are rich sources for materials research. Many metastable phases are hidden behind the widely accepted phase diagrams. How to discover these hidden phases is one of the central issues for materials research. In this paper, experiences with predicting the phase diagram of boron by a theoretical approach are described and impacts on materials research, by taking superconductivity research as a working example, are shown. A combination of the microscopic method of DFT and the macroscopic approach of thermodynamics is an extremely powerful tool.  相似文献   

16.
The CALPHAD approach coupled with modelling of solid-liquid interfacial energy has been used to calculate the driving force for nucleation in undercooled melts. Thermodynamic parameters needed in nucleation have been evaluated using simplified formulae or numerical methods from assessed phase diagrams. Various models for the interfacial energy and its temperature dependence have been used. Phase selection on solidification and devitrification of glasses as well as the range of amorphous phase formation have been predicted in the Al-Ce and Fe-B systems and compared with those experimentally determined. Furthermore, the formation of quasicrystals in the Al-Mn and the competition with other compounds has been investigated.  相似文献   

17.
Application of a systems approach to the computational materials design led to the development of a high performance stainless steel. The systems approach highlighted the integration of processing/structure/property/ performance relations with mechanistic models to achieve desired quantitative property objectives. The mechanistic models applied to the martensitic transformation behavior included the Olson–Cohen model for heterogeneous nucleation and the Ghosh–Olson solid-solution strengthening model for interfacial mobility. Strengthening theory employed modeling of the coherent M2C precipitation in a BCC matrix, which is initially in a paraequilibrium with cementite condition. The calibration of the M2C coherency used available small-angle neutron scattering (SANS) data to determine a composition-dependent strain energy and a composition-independent interfacial energy. Multicomponent pH-potential diagrams provided an effective tool for evaluating oxide stability. Constrained equilibrium calculations correlated oxide stability to Cr enrichment in the metastable spinel film, allowing more efficient use of alloy Cr content. The composition constraints acquired from multicomponent solidification simulations improved castability. Then integration of the models, using multicomponent thermodynamic and diffusion software programs, enabled the design of a carburizable, secondary-hardening martensitic stainless steel for advanced bearing applications. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

18.
The content of this work is the development and investigation of a high temperature coating system for gas turbine blades. On a single crystal CMSX4 substrate a thin CVD layer of α‐alumina is deposited as diffusion barrier coating. As a protection against high‐temperature corrosion it is covered with a PVD NiCoCrAlY layer, which also performs as a bond‐coating for the following thermal barrier coating deposited by Atmospheric Plasma Spraying. The surface preparation techniques and coating parameters for the multilayer coating were optimized with respect to the bonding mechanisms of the different deposition techniques. The samples were annealed at 1100°C for 100 h under neutral atmosphere. Furthermore thermocycle experiments were carried out to investigate thermocycle behaviour. The coating system proved its efficiency: No cracks were observed except vertical segmentation cracks in the TBC, all layers showed good adhesion and the diffusion barrier remained intact suppressing any noticeable diffusion of Al, Cr, Ta, Re, W and Ti.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号