首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 984 毫秒
1.
为释放RH产能,缩短精炼处理时间,提高生产效率,采用CAS工艺替代RH工艺精炼镀锡板,并通过取样对比分析了不同工艺下钢水洁净度水平。结果表明:两种精炼工艺生产的钢水中间包T.O含量为13~14 ppm,相差不大;CAS精炼工艺平均增氮5.2 ppm,相比RH工艺控氮能力较弱,不适合极低氮钢种的生产;钢水中显微夹杂物有单颗粒Al2O3、簇状Al2O3、Al2O3-CaO和Al2O3-MgO系夹杂物,以Al2O3为主;CAS精炼结束夹杂物尺寸2~10μm,总数量16.11个/mm2,较进站时减少66%,能有效去除钢水中夹杂物,满足MR T-2.5 BA钢的生产需要;对比RH精炼工艺,RH结束时夹杂物总数15.31个/mm2,略低于CAS工艺,中间包夹杂物总数量11.45个/mm2,比CAS工艺低23.9%,R...  相似文献   

2.
在42CrMoA合金结构钢LF-RH精炼生产中,进行了原生产工艺和增氮析氮法去除钢中夹杂物技术工业试验研究,获得了良好的实验效果。通过系统取样,发现在增氮析氮法LF精炼过程中,通过底吹增氮法可使钢中T[N]含量增至260×10-6以上,满足RH真空精炼过程中以气泡形式析氮的需求;增氮析氮法还具有良好的全氧去除效果,经RH真空处理后,平均T[O]含量下降率可达37.4%;增氮析氮法也具有良好的夹杂物去除效果,经处理后单位面积夹杂物数量由原有的8.771个/mm2降为3.585个/mm2,去除率达34.6%;在各类夹杂物中,增氮析氮法对氧化铝夹杂去除效率最高,处理后可将钢中Al2O3夹杂比例由83%降为74%,有效提升了42CrMoA合金结构钢洁净度。  相似文献   

3.
西昌钢钒厂由于转炉热量不足而以转炉—LF精炼—RH精炼—连铸工艺生产IF钢,为探究RH强制脱碳与自然脱碳工艺生产IF钢精炼效果,采用生产数据统计、氧氮分析、夹杂物自动扫描、扫描电镜和能谱分析等手段,对不同脱碳工艺对顶渣氧化性以及钢的洁净度影响进行了详细研究。结果表明:(1)与自然脱碳工艺炉次相比,采用强制脱碳工艺的炉次在转炉结束与RH进站钢中的平均[O]含量更低;(2)两种工艺脱碳结束钢中的[O]含量基本在同一水平;(3)强制脱碳工艺的炉次在RH结束时渣中平均T.Fe的质量分数降低了1.3%。在能满足RH脱碳效果的前提下,尽量提高转炉终点钢液碳含量、降低钢液氧含量,后续在RH精炼时采用强制吹氧脱碳工艺,适当增大吹氧量来弥补钢中氧,可显著降低IF钢顶渣氧化性。自然脱碳工艺与强制脱碳工艺控制热轧板T.O含量均比较理想;与自然脱碳工艺相比,强制脱碳工艺可有效降低IF钢[N]含量,这与强制脱碳工艺真空室内碳氧反应更剧烈所导致的CO气泡更多和气液反应面积更大有关。脱碳工艺对IF钢热轧板中夹杂物类型、尺寸及数量没有明显影响,夹杂物主要由Al2O3夹杂、Al2O3–TiOx夹杂与其他类夹杂物组成,以夹杂物的等效圆直径表示夹杂物尺寸,以上三类夹杂物平均尺寸分别为4.5、4.4和6.5 μm,且钢中尺寸在8 μm以下的夹杂物数量占比高于75%。在RH精炼过程中,尽量降低RH脱碳结束钢中[O]含量,有利于提高钢液洁净度。   相似文献   

4.
0.88%Si无取向硅钢的生产工艺为100 t BOF出钢时加300kg石灰,终点[C]0.035%~0.05%,出钢温度1640~1650℃,RH吹氧脱碳,加99.0%Al-Fe合金6.69 kg/t,加70%Si-Fe合金15.70 kg/t,70 mm板坯连铸过程全程保护浇铸,使用镁质碱性中间包覆盖剂。分析结果表明,RH终点[O]28×10-6,铸坯[O]22×10-6,RH-前[N]为16×10-6,RH过程增氮4×10-6,RH结束到铸坯增氮6×10-6;RH脱碳终点时钢中夹杂物以球形MnO·Al2O3为主;RH出站时以不规则形状的Al2O3为主,并伴有少量单独存在的CaS夹杂;中间包钢液内的夹杂物主要以不规则形状的Al2O3为主;铸坯中多为不规则形状的Al2O3以及少量AlN,还有少量由结晶器卷渣引起的含Na成分的复合夹杂物。  相似文献   

5.
夹杂物对高品质特殊钢的服役性能有显著影响,但国内外对冶炼过程35MnB钢中夹杂物的演变行为尚不明晰。通过采用扫描电镜和FactSage热力学计算等方法和手段,对Al粒+SiC扩散脱氧(1号工艺)和SiC扩散脱氧(2号工艺)生产的35MnB钢冶炼过程钢成分、渣成分及钢中夹杂物的演变行为进行研究。结果表明,1号工艺精炼过程会出现钢水增硅,不同扩散脱氧工艺铸坯中的全氧和氮质量分数差别不大,全氧质量分数分别为11.9×10-6和11.6×10-6。35MnB钢中主要存在尺寸小于5μm的氧化物、硫化物或TiN夹杂物。夹杂物种类主要受沉淀脱氧工艺影响,受扩散脱氧工艺影响较小。冶炼过程夹杂物的演变规律为:Al2O3(氩站)→CaO-MgO-Al2O3(LF精炼)→CaO-MgO-Al2O3-CaS(软吹)→CaO-MgO-Al2O3-CaS或CaO-Al2O  相似文献   

6.
SCM435钢的生产流程为80 t BOF-LF-RH-280 mm×325 mm坯连铸。LF终点精炼渣成分为(/%):45~55CaO,10~15SiO2,20~30Al2O3,∑(FeO+MnO)≤1%。分析了RH加钙(0.0013%Ca)和RH不加钙(0.0002%Ca)对Φ13 mm盘条中D和Ds夹杂物的影响。结果表明,RH不加钙处理工艺夹杂物最大尺寸为7.65μm,Ds≤0.5级合格率为100%;RH加钙处理工艺夹杂物最大尺寸为25.68μm,Ds≤0.5级合格率为95%。在数量控制方面,RH不加钙处理工艺夹杂物指数由RH加钙工艺的0.72降至0.68,D类≤1.0合格率由RH加钙工艺的30%提高至75%;RH不加钙处理工艺夹杂物主要为MgO·Al2O3,少量钙铝酸盐夹杂,RH加钙工艺为镁铝尖晶石、钙铝酸盐和CaS多相夹杂。因此,在脆性D类和Ds类夹杂物尺寸、数量和类型控制上,RH不加钙处理工艺改善效果明显  相似文献   

7.
为了研究采用BOF-LF-RH-CC工艺生产的A32船板钢洁净度水平,进行了三炉工业实验.通过对冶炼过程系统取样分析,研究了钢中总氧、氮含量变化,夹杂物的转变规律及机理.结果表明:该工艺生产的船板钢有较高的洁净度,中包总氧控制在2×10-5以下,氮含量控制在4×10-5以下;LF精炼过程中,钢中总氧、夹杂物数量密度和平均尺寸均降低,夹杂物转变为CaO-MgO-Al2O3三元系;RH精炼过程中,钢中总氧和夹杂物数量密度降低,而夹杂物平均尺寸升高;钙处理过程中,夹杂物数量密度升高,而夹杂物平均尺寸降低,夹杂物转变为CaO-Al2O3-CaS三元系.   相似文献   

8.
卢乃双  梁娜  黄涛 《特殊钢》2020,41(3):25-27
采用50 t电弧炉短流程生产25MnBM履带板用钢。研究了钢中TiN夹杂物的控制工艺及稀土对25MnBM钢中非金属夹杂物的影响。通过降低钢中氮含量至70×10-6以下及优化连铸工艺,TiN夹杂物的数量及尺寸得到了大幅度的改善。通过添加稀土,研究稀土对25MnBM履带板用钢非金属夹杂物的影响,试验结果表明:按0.20~0.25 kg/t加入稀土后,可使非金属夹杂物总面积减小,最大夹杂物尺寸和夹杂物平均尺寸减小,对钢起到了较好的净化作用。  相似文献   

9.
为研究LF-RH精炼工艺生产Q690钢时不同钙处理时机下夹杂物特征的变化,开展工业试验对RH精炼前后钙处理炉次取样进行定量分析对比。钙处理后夹杂物中CaO质量分数持续增加,CaS质量分数瞬态增加,夹杂物熔点降低。RH精炼前钙处理炉次中,RH精炼过程夹杂物的成分接近低熔点区,结束时夹杂物数量密度和面积分数分别为15个/mm2和0.01%。RH精炼后钙处理炉次中,RH精炼过程夹杂物依旧为高熔点Al2O3-MgO类型,结束时夹杂物数量密度和面积分数分别降至1个/mm2和0.002 5%。RH精炼前钙处理会使RH精炼过程夹杂物熔点以及夹杂物与钢液间的接触角降低,导致夹杂物去除驱动力降低,从而抑制夹杂物的去除。因此LF-RH精炼工艺生产铝脱氧钢时,为提高精炼过程钢中非金属夹杂物的去除效率,应在RH精炼后进行钙处理操作。  相似文献   

10.
采用35 t电弧炉-AOD脱碳-LF精炼-模铸工艺制备了17-7PH沉淀硬化不锈钢自耗电极,并通过气体保护电渣炉重熔得到了2 t重的电渣锭。利用ASPEX扫描电镜分析了电渣重熔前后17-7PH钢中夹杂物数量、尺寸、成分的变化规律,并采用SEM-EDS进一步观察夹杂物的形貌及组成。研究结果发现,电渣重熔后,O含量由6.6×10-6降至5.7×10-6,N含量由200×10-6降至180×10-6。重熔前后夹杂物的类型没有变化,重熔后总的夹杂物数量大幅减少,特别是大颗粒夹杂物的数量明显减少、尺寸减小。电渣锭中总的夹杂物以AlN夹杂物为主,其尺寸较大、数量最多。为了提高17-7PH钢电渣锭的洁净度,应尽可能减少自耗电极中的N含量,以减少电渣重熔过程AlN夹杂物的生成量。  相似文献   

11.
为了研究120 t BOF-LF-RH-160 mm×160 mm坯CC工艺生产的铝脱氧20钢(/%:0.13~0.23C,0.17~0.37Si,0.35~0.65Mn,≤0.035P,≤0.035S,0.020~0.050Al)中非金属夹杂物的控制技术,对LF精炼过程中脱氧剂加入时机进行调整,并对精炼过程中非金属夹杂物类型与夹杂物数量进行分析。结果表明,转炉出钢后采用铝块脱氧,LF精炼进站非金属夹杂物主要为Al2O3,精炼结束前部分夹杂物由Al2O3转变为Al2O3·CaO,RH结束后非金属夹杂物密度3~4个/mm2,铸坯氧含量(7.48~8.18)×10-6;而转炉出钢后采用硅锰进行脱氧,精炼结束前采用铝线,精炼过程中夹杂物主要为MnO·SiO2,CaO含量小于5%,精炼结束非金属夹杂物控制为Al2O3,RH真空处理后,非金属夹杂物密度小于1.5个/mm2,铸坯氧含量(4.94~5.53)×10-6。因此,针对采用“BOF-LFRH-CC”工艺流程生产的含铝钢,提出精炼结束前将非金属夹杂物控制为Al2O3,同时运用RH真空高效去除夹杂物,以提高钢水的洁净度。  相似文献   

12.
对“120 t BOF-LF-RH-CC”流程GCrl5轴承钢的洁净度研究结果表明,LF精炼结束以A12O3 • MgO尖 晶石和Al2O3-MgO-CaO夹杂为主,RH真空处理后, Al2O3- MgO尖晶石几乎全部消失,钢中夹杂物以液态钙铝酸盐为主,T.0含量降至5.3x10-6;浇注过程中间包重新成Al2O3- MgO尖晶石;RH终点和中间包钢水以及连铸坯未发现≥20um钙铝酸盐夹杂。  相似文献   

13.
分析了“BOF-RH-CC”和“BOF-LF-CC”两种工艺流程生产的ML08Al钢中非金属夹杂物类型、数量密度及总氧变化。结果表明,两种流程转炉脱氧合金化后钢中非金属夹杂物主要为Al2O3;采用“BOF-LF-CC”流程,LF精炼结束钢中部分非金属夹杂物由Al2O3转变为Al2O3·CaO和Al2O3·MgO;而采用“BOF-RH-CC”流程,RH真空后钢中非金属夹杂物仍然以Al2O3为主。转炉出钢脱氧合金化后,钢水中总氧含量27.8×10-6~31.5×10-6,经过LF精炼后,总氧含量为20.2×10-6~22.5×10-6,而经过RH处理后,总氧含量为14.7×10-6~15.3×10-6。LF精炼和RH真空处理对夹杂物数量的去除率分别为49.6%和80.9%。因此,“BOF-RH-CC”工艺流程生产的ML08Al钢水洁净度优于“BOF-LF-CC”工艺流程生产的钢水。  相似文献   

14.
25CrMoVNi钢由120 t EAF-LF-RH脱气-φ600 mm圆坯连铸工艺生产,EAF出钢时加Al预脱气使[Al]s≥0.030%,并加入石灰造渣预精炼,LF精炼时炉渣表面加Al粒扩散脱氧,LF精炼渣的组成为(/%):53~57CaO,10~13SiO2,27~28Al2O3,6~9MgO,0.09~0.10MnO。RH脱气精炼结果表明,RH后T[O]由脱气前0.001 3%~0.001 5%降至0.000 5%;钢中TCa由0.001 9%降至0.000 9%~0.001 7%;夹杂物发生MgO·Al2O3→(MgO)z(CaO)x(Al2O3)y→(CaO)x(Al2O3)y的转变;最后以尖晶石类固相夹杂物数量迅速减少,以钙铝酸盐类的液相夹杂物数量呈现出先增加后减少,钢中夹杂物由6.7个/mm2下降至2.7个/mm2  相似文献   

15.
杜广巍  郭汉杰 《特殊钢》2016,37(4):18-22
55SiCr钢280 mm×325 mm铸坯(/%:0.55C,1.42Si,0.67Mn,0.008S,0.67Cr)的冶炼流程为80 t BOF-LF-RH-CC工艺。通过BOF出钢加Al和硅铁合金,同时加入精炼渣,控制精炼过程渣碱度R(CaO/SiO2)为2.0左右,RH≥20 min,软吹搅拌≥15 min,控制钢中夹杂物转变,得到洁净弹簧钢55SiCr。分析结果表明,LF精炼过程中夹杂物由早期的Al2O3-SiO2-MnO和Al2O3夹杂将逐渐转变为Al2O3-CaO-SiO2夹杂,RH真空处理后夹杂物全部转变为Al2O3-CaO-SiO2夹杂,LF开始精炼T[O]和[N]分别为36×10-6和26×10-6,铸坯T[O]、[N]分别为7×10-6和43×10-6,铸坯中夹杂物主要为Al2O3-CaO-SiO2和Al2O3,尺寸≤10μm。   相似文献   

16.
研究的帘线钢的冶炼流程为150 tLD-RH-LF-软吹氩-CC工艺。通过LD出钢时加入Si-Mn脱氧,并在LF加入低碱度顶渣进行钢渣反应控制钢中非金属夹杂物的塑性。结果表明,RH-LF-中间包和铸坯阶段,钢中主要夹杂物分别为MnO-Al2O3-Si02(RH),Ca0-Al2O3-Si02(LF)和MnO-Al2O3-SiO2(中间包和铸坯),采用Si-Mn脱氧和SiC扩散脱氧,低碱度低Al2O3顶渣精炼,控制T[O]≤20×10-6,[A1]s≤0.0013%,可有效控制钢中夹杂物数量和尺寸,以及控制夹杂物中Al2O3含量并形成可塑性夹杂。  相似文献   

17.
为进一步提升RH精炼的冶炼效率,更好与高拉速连铸相匹配,对RH冶炼IF钢过程中加Ti时机和纯循环时间对夹杂物的影响开展了试验研究。结果表明,钢液中T.O质量分数在加Al 5 min后小于0.003 0%;夹杂物的数密度在合金化4~5 min后具有最小值,随后增加纯循环时间,夹杂物的数密度无明显变化。在300 t RH工业生产实践中,Al-Ti间隔时间为2 min、纯循环时间为5 min和Al-Ti间隔3 min、纯循环4 min的处理工艺可以保证钢液中的夹杂物充分上浮去除,夹杂物的数密度为0.7~0.8个/mm2,可以实现RH的高效化精炼。在Al-Ti间隔时间大于1 min、纯循环时间大于3 min的操作条件下钢液中未检测到尺寸大于50 μm的夹杂物。基于以上工艺优化,IF钢的RH真空处理时间已经降低至20 min。向钢液中加入Al后主要形成Al2O3夹杂物,加入钛铁合金化后钢液中会形成富[Ti]区域,[Ti]将Al2O3还原而生成Al-Ti氧化物。随着[Ti]在钢液内的扩散以及Al-Ti氧化物的生成,钢液中的[Al]将Al-Ti氧化物还原而生成Al2O3,最终生成以Al-Ti氧化物为核心、外层由Al2O3包裹的复合夹杂物。  相似文献   

18.
研究的0.80%~0.82%C帘线钢的生产流程为80 t:BOF-CAS-LF-VD-150 mm×150 mm CC工艺。通过顶底复吹转炉出钢过程加入300 kg金属锰和200 kg高纯硅进行硅锰复合脱氧,LF过程先造碱度(CaO/SiO2)2.04的精炼渣,再将精炼渣碱度(CaO/SiO2)降至0.86,保持渣中Al2O3含量为~5%,来控制钢中非金属夹杂物的塑性转变。结果表明,铸坯平均总氧含量为16×10-6,氮含量控制在50×10-6左右,CAS(密封吹氩调成分)过程钢中夹杂物主要是MnO-Al2O3-SiO2;LF、VD过程钢中和铸坯中夹杂物主要是CaO-Al2O3-SiO2-MgO系,该类夹杂物尺寸偏小(2~3μm),分布在1 400℃低熔点区域附近。  相似文献   

19.
刘飞  岳峰  刘佳伟  肖波  翟万里 《特殊钢》2020,41(4):15-18
试验60Si2Mn弹簧钢(/%:0.58C,1.75Si,0.75Mn,0.012P,0.005S,0.006Als,0.008Alt)的工艺流程为100t转炉不加铝饼脱氧,采用硅铁脱氧,控制终点[C]≥0.08%,出钢温度1620~1660℃,LF到站温度≥1500℃,精炼时间不少于35min,RH真空度≤100 Pa并且保持时间≥20 min,软吹前喂入硅钙线100 m进行变性夹杂物处理,150 mm方坯采用全程保护浇铸。分析结果表明,钢中氧含量在RH精炼过程中到达最低,在中间包阶段又有所回升。在LF精炼中,钢液增氮明显。夹杂物成分以Al2O3、SiO2、MgO和CaO为主,在LF精炼过程中,SiO2含量下降了26.7%,MgO和CaO含量上升了36.7%,最终铸坯中夹杂物成分为33%Al2O3,20.7%SiO2,45%MgO和CaO,减少了钢中高硬度夹杂物的含量。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号