首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
针对控制参数的不确定性以及存在未知外部扰动情况下移动机器人的轨迹跟踪问题,提出一种基于光滑非线性饱和函数的自适应模糊滑模轨迹跟踪控制算法。通过建立不确定非线性移动机器人运动控制模型,利用自适应模糊逻辑系统构建自适应模糊滑模控制器。为了增强轨迹跟踪控制算法对随机不确定外部扰动适应能力的同时削弱滑模控制算法中的输入抖振现象,利用有界输入有界输出(BIBO)稳定的方法,通过带有自适应调节算法的模糊系统对滑模控制律中非线性函数项进行自适应逼近,并设计了模糊系统中可调参数的自适应控制律,保证了控制系统的稳定与收敛。实验结果表明,所设计的控制器对系统参数不确定性和外界扰动均具有较强的轨迹跟踪性能和鲁棒性。与传统的滑模控制算法相比,该算法不仅能有效减小输入抖振而且轨迹跟踪控制精度提高了18.89%。  相似文献   

2.
针对非完整移动机器人编队控制问题,基于领航者-跟随者l-ψ控制结构,提出了一种运动学控制器与自适应神经滑模控制器相结合的新型控制策略。采用径向基神经网络(radial basis function neural network,RBFNN)对跟随者及领航者动力学非线性不确定部分进行在线估计,并通过自适应鲁棒控制器对神经网络建模误差进行补偿。实验结果表明所提方法不但解决了移动机器人编队控制的参数与非参数不确定性问题,还确保了机器人编队在期望队形下对指定轨迹的跟踪;基于Lyapunov方法的设计过程,保证了控制系统的稳定。  相似文献   

3.
为了实现康复训练过程中高精度的轨迹跟踪控制,针对下肢康复机器人的模型参数和外界干扰等不确定性因素对其轨迹跟踪造成严重影响,提出一种模型不确定的下肢康复机器人轨迹跟踪自适应控制方法。根据所提方案,设计了相应的轨迹跟踪自适应控制器;并进行了轨迹跟踪控制仿真实验对比分析,结果表明,计算力矩控制方法在系统模型不确定时,膝关节的最大角度跟踪误差高达11.3°,髋关节最大稳态误差4.6°;而轨迹跟踪自适应控制方法在模型不确定的情况下,髋关节和膝关节的角度跟踪稳态误差均收敛于零;轨迹跟踪自适应控制方法可以显著提高下肢康复机器人轨迹跟踪的精度。  相似文献   

4.
为了抑制低频线振动台中存在的模型不确定性及外部扰动,基于模糊基函数网络(FBFN)提出了一种自适应重复学习控制方法.利用FBFN逼近低频线振动台的模型不确定性及外部扰动,将对模型不确定性和扰动的辨识问题转化为对FBFN权系数的辨识问题.所提出的控制律由自适应控制和重复学习控制组成.自适应律用来估计FBFN权系数;为了有效地减弱抖振,使用自适应PI控制结构逼近非连续控制.由于非连续控制的界是未知的,利用自适应律估计这个未知的界.重复学习控制用来提高系统对周期性输入信号的跟踪性能.采用Lyapunov理论设计的自适应重复学习控制律保证了低频线振动台的渐近稳定性和位置跟踪性能.仿真结果表明,自适应重复学习控制律改善了系统的跟踪性能和加速度失真度.  相似文献   

5.
针对二关节机器人轨迹跟踪问题,设计了一种新的反演自适应模糊滑模控制器.该方法设计了反演滑模控制器和自适应模糊控制器,通过设计合适的自适应律,采用模糊控制器在线估计不确定性上界值,实现了对建模误差和干扰的自动跟踪,削弱了抖振.利用李亚普诺夫定理证明了系统的稳定性.仿真结果表明该方法的有效性.  相似文献   

6.
基于模糊自适应不确定性机械臂的轨迹跟踪控制   总被引:7,自引:0,他引:7  
针对一类不确定性机械臂的轨迹跟踪问题,提出了一种计算力矩加模糊补偿器的控制方案,计算力矩用来控制系统的标称部分,模糊补偿器用来控制系统的不确定部分,模糊补偿器的参数基于Lynapunov稳定性理论自适应调节,整个控制器保证了闭环系统的渐近稳定。在二自由度机械臂上的仿真验证了本文算法的有效性。  相似文献   

7.
针对无人船受到风浪等不确定性干扰时易出现轨迹跟踪误差大、自适应增益范围小、滑模控制方法的抖振等问题,提出了一种新型自适应超螺旋滑模控制算法。根据无人船结构建立数学模型,引入轨迹参考点将数学模型转换为二阶系统微分方程;设计自适应超螺旋滑模控制器;构造Lyapunov函数,推导满足系统闭环稳定性的自适应增益。在考虑风阻、浪阻的情况下,将本文方法分别与超螺旋滑模控制和传统自适应超螺旋滑模控制这两种方法进行仿真实验对比。结果显示,在仿真实验的30 s中,本文方法的轨迹跟踪平均绝对误差比超螺旋滑模控制和传统自适应超螺旋滑模控制分别减少了0.60 m和0.27 m,仿真结果表明本文方法能够有效提高系统控制性能,抑制抖振,减小轨迹跟踪误差。  相似文献   

8.
不确定混沌电力系统的鲁棒自适应跟踪控制   总被引:1,自引:0,他引:1  
针对混沌电力系统的跟踪控制问题,在考虑系统含有常参数不确定性及未知干扰的前提下,采用动态面控制方法,设计了鲁棒自适应跟踪控制器,保证了闭环系统的半全局渐近稳定,进而使输出渐近跟踪参考轨迹.理论分析及仿真结果表明,所设计的自适应非线性控制器能够有效抑制简单电力系统的混沌振荡,且具有一定的适应性及鲁棒性.  相似文献   

9.
针对带有建模误差和外部干扰的多关节机器人轨迹跟踪问题,根据滑模控制原理,采用非奇异终端滑模面,基于反演设计方法,设计了反演非奇异终端模糊滑模控制。并设计了模糊控制器在线估计不确定性上界值,削弱了抖动。利用李亚普诺夫定理证明了系统的稳定性,仿真结果表明方法的有效性。  相似文献   

10.
全方位移动机器人模糊自适应PID控制   总被引:1,自引:0,他引:1  
吴定会  黄旭东  纪志成 《微特电机》2007,35(11):32-34,51
针对全方位移动机器人,结合PID和模糊控制两者的优点,提出了一种模糊自适应PID(FAPID)的控制方法。对模糊自适应PID控制算法进行了理论分析,基于Matlab建立了全方位移动机器人的简化仿真模型。仿真研究表明,采用模糊自适应PID控制方法,系统的调节时间缩短,响应速度加快,抗干扰能力和适应参数变化的能力要优于常规的PID控制。  相似文献   

11.
机器人的神经网络鲁棒轨迹跟踪控制   总被引:2,自引:0,他引:2  
考虑了一类具有外界扰动和参数不确定性机器人系统的轨迹跟踪鲁棒控制问题。提出了两种控制方法:第一种应用输入输出线性化方法以及Lyapunov函数法,推导出鲁棒输出跟踪控制器。所获得的控制器可确保系统输出按指数规律跟踪期望输出,同时相应闭环系统的状态一致最终有界。第二种方法在第一种控制方法的基础上,利用一个RBF神经网络自适应学习系统不确定性的未知上界,有效的克服了系统不确定性的影响,提高了控制精度。  相似文献   

12.
针对移动机器人反演轨迹跟踪控制中的速度跳变与速度跟踪问题,提出一种采用生物膜电压模型和反演滑模方法的移动机器人生物启发式变结构轨迹跟踪控制系统。首先基于移动机器人的运动学模型建立位姿跟踪回路,即利用生物启发式膜电压模型获取虚拟的位姿误差信号,并结合Lyapunov函数设计反演控制器来解决速度跳变;然后考虑移动机器人的动力学模型设计速度跟踪回路,构造基于组合趋近律的滑模变结构力矩控制器来保证速度跟踪;接下来,根据Lyapunov理论对所提系统的稳定性进行证明;最后,以iRobot Create移动机器人为控制对象进行直线、圆和折线轨迹跟踪控制的仿真研究。通过分析比较初始阶段和拐点处的跟踪误差、速度和力矩,验证了所提系统的有效性。  相似文献   

13.
针对轨迹跟踪控制中机器人关节驱动器输出扭矩受限的问题,提出一种基于模糊自适应PD的输入有界轨迹跟踪控制算法。不同于以往的控制策略,该算法在控制律中引入具有饱和特性的改进反正切函数,以确保扭矩控制输入的有界性,并结合模糊自适应原理实现PD增益的在线自整定,以改善系统的动态特性。通过对位置跟踪误差进行线性滤波得到速度跟踪误差替代信号,使得整个系统的闭环控制仅需位置输出反馈。利用奇异摄动理论对系统进行了稳定性分析,证明在一定约束下的PD增益自整定过程中,仍能保证系统稳定。仿真和比较结果表明,该算法能够在严格保证控制输入有界的前提下,减小超调量,缩短系统调整时间,具有更优的轨迹跟踪性能。  相似文献   

14.
由于没有传动机构,永磁直线同步电机(PMLSM)作为低频线振动台的驱动部件对扰动和参数不确定性很敏感,摩擦力及纹波推力扰动等非线性因素严重影响了PMLSM的运动精确度.针对上述问题,提出一种鲁棒自适应重复学习控制方法,用于提高低频线振动台系统的精度.所设计的控制律由参数自适应控制、积分滑模控制、重复学习控制组成.参数自适应控制用来估计未知的模型参数并予以补偿;积分滑模控制用来镇定低频线振动台系统,抑制非周期扰动;重复学习控制用来抑制周期性扰动,提高对周期性位置信号的跟踪性能.采用Lyapunov理论设计的鲁棒自适应重复学习控制律能够保证闭环系统的渐近稳定性和位置跟踪性能.仿真结果表明,鲁棒自适应重复学习控制方法明显提高了系统的跟踪性能,改善了加速度失真度.  相似文献   

15.
针对永磁直线同步电机(PMLSM)伺服系统的位置跟踪精度易受参数变化、外部扰动等不确定性因素影响,该文提出了自适应非奇异快速终端滑模控制(ANFTSMC)方法。首先,建立含有不确定性的PMLSM动态模型。然后,采用非奇异快速终端滑模控制(NFTSMC)方法来抑制这些不确定因素的影响,避免了奇异性,进而保证了系统跟踪误差在有限时间内快速收敛,且削弱了抖振;同时,利用自适应控制估计系统中不确定性参数的上界,提高了系统的鲁棒性能。最后,通过实验验证了所提出控制方案的有效性,与SMC、NFTSMC相比,该方法在保证快速收敛性和跟踪精度的情况下,明显削弱了抖振现象,具有较强的鲁棒性能。  相似文献   

16.
电液比例系统变论域自适应模糊滑模控制   总被引:1,自引:0,他引:1  
针对具有未知死区的电液比例系统,提出了一种带有死区补偿的变论域自适应模糊滑模控制方法.根据比例换向阀的死区特性,采用模糊逻辑系统设计死区预补偿器;将变论域的思想引入到自适应模糊滑模控制中,在线调节输入输出变量论域和隶属度函数,从而提高传统模糊滑模控制的精度;依据Lyapunov稳定性理论,构造变论域伸缩因子的自适应律,并对模糊逼近误差的上界进行实时估算,无需假设逼近误差上界已知.实验结果表明:采用变论域方法能有效地提高自适应模糊控制器的性能,在电液比例系统的位置跟踪控制中能克服系统固有的非线性特性、参数不确定性及外界干扰的影响,并且死区预补偿器消除了未知死区对跟踪精确度的影响,该方法具有响应快、精确度高、自适应鲁棒性强的特点.  相似文献   

17.
针对外界扰动及不确定性等因素对电气伺服系统性能的影响,将具有积分滑模面的自适应模糊控制器引入电气伺服系统的位置控制,利用滑模控制克服不确定性因素影响,通过自适应律与模糊规则的结合削弱滑模控制引起的抖振,通过参数自适应估计方法保证滑模变结构控制增益的合理性,提高了电气伺服系统的稳定性与位置跟踪性能.仿真实验结果表明,这种控制系统具有控制结构简单,稳态性能好等优点,并对不确定性等因素具有良好的鲁棒性.  相似文献   

18.
为了解决输入受限下非完整轮式移动机器人的跟踪控制问题,考虑迭代学习控制方法,设计了一种迭代学习控制律,这里所设计的迭代学习控制律结合了系统的跟踪误差和约束下的上一代控制律.通过应用范数分析理论,对跟踪误差的收敛性进行了理论分析,验证了设计的控制律的有效性.最后,给出了一个仿真实例以证明理论分析结果的正确性,仿真结果表明,在设计的迭代学习控制律作用下,具有输入受限的非完整轮式移动机器人能够获得很好的跟踪控制性能,跟踪误差最终收敛于零的很小邻域内.  相似文献   

19.
向旭 《电工技术》2020,(12):46-49
针对飞行器运动轨迹受外界气流干扰和模型参数不确定性导致复杂空间运动轨迹跟踪精度不足的问题,提出了一种改进的双闭环滑模控制算法提高飞行器轨迹跟踪的精度。该算法中外环位置控制器采用自适应率抑制外界干扰影响,内环姿态控制器利用切换函数自适应模糊器抑制未知干扰力矩和抖振的影响。利用Lyapunov理论验证双闭环控制算法具有全局渐近稳定性。仿真结果表明,改进的双闭环控制算法的姿态角跟踪误差精度由0.02提高到了0.0005,该算法对外界干扰具有较强的鲁棒性,同时能够实现高精度的轨迹跟踪。  相似文献   

20.
针对永磁直线同步电机(PMLSM)易受非线性因素影响而降低伺服系统鲁棒性的问题,提出一种自适应互补滑模控制方法。永磁直线同步电机的非线性因素包括系统参数变化、电机端部效应及外部不确定性的扰动。互补滑模控制将积分滑模面与广义误差滑模面相结合,将系统状态轨迹限定在两个面的交线上,缩短了状态轨迹达到滑模面的时间,提高了位置跟踪精度。为了进一步改善系统鲁棒跟踪性能,利用自适应控制对不确定扰动因素的上界进行估计,减小不确定因素对系统的影响,改善滑模控制的抖振现象。实验结果表明所提出的控制方法是有效可行的,自适应互补滑模控制不仅提高了系统的跟踪性能,而且更有效地抑制了不确定因素对控制系统的影响。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号