共查询到20条相似文献,搜索用时 15 毫秒
1.
“双碳”战略要求新型储能器件具备更高的能量密度和更低的成本。锂硫电池因其低成本、环保和高比能(2600 Wh kg-1)等优势,而成为储能领域中最具潜能的电池体系,已受到了广泛的关注及研究。近年来,锂硫电池已取得了系列进展,但仍面临一些问题与挑战,包括硫固有的电荷传输效率差、可溶性多硫化物的“穿梭效应”、充放电过程中的剧烈体积膨胀及锂枝晶的生长等,这些问题会导致锂硫电池性能下降甚至失效。碳基硫宿主具有多孔、高电导、轻质、大比表面积等优点,能够有效解决以上难题,已成为锂硫电池研究领域中的重要方向。而碳材料种类繁多,有碳纳米纤维、碳纳米管、碳纳米片、碳纳米花等,不同形貌或具备不同纳米尺度维度的碳纳米结构对锂硫电池的性能具有不同的影响规律。基于此,本文围绕高性能锂硫电池碳基硫宿主进行综述,分类综述了一维、二维、及多维复合碳材料在锂硫电池领域的应用及其性能,阐述不同维度碳基硫宿主对其电化学性能的影响规律,并对未来的研究方向进行了一定的展望。 相似文献
2.
3.
在近20多年的发展过程中,锂离子电池已经越来越接近于其理论能量密度的极限,并且随着化石能源消耗和电动车需求量的增加,锂离子电池已经不能满足于社会的需要,寻找可替代的绿色新能源也变得愈发重要。其中,锂硫电池是最有希望代替锂离子电池,成为下一代电化学储能系统的电池之一。由于硫的无毒性、低成本和高的能量密度等优势,使得锂硫电池吸引了研究者们的广泛关注。硫作为锂硫电池中非常重要的一部分——正极材料,对于电池的循环寿命、循环稳定性、能量密度、库伦效率等方面产生了非常重要的影响。但是锂硫电池中存在的关键问题亦限制了其实际应用,例如硫的导电性差、多硫化物中间体的"穿梭效应"、较低的硫负载量、大的体积膨胀以及复杂的内部反应机理等。为了提高锂硫电池整体的性能,设计具有高的比表面积、优越的导电性以及更多的活性位点的基底材料来负载硫变得越来越重要。为解决这些问题,研究者们设计了各种不同材料来进行硫的负载,例如碳-硫复合材料、金属氧化物-硫复合材料、聚合物-硫复合材料等。其中由于碳材料具有密度低、比表面积大、导电性好、结构多样、易于加工制备和价格低廉等优点,引起了研究者们的广泛关注,因此研究者们相继实现了用一维、二维以及三维等不同结构的碳材料来负载硫,使得锂硫电池的循环寿命、循环稳定性和库伦效率得到了有效的提高。虽然在循环寿命等方面,研究者们做出了很大的贡献,但是硫的负载量却有限,从而导致电池整体的能量密度仍然很低。从商业化的角度来看,电池能量密度的高低才是研究者们关注的重点,因此研究者们在提高其性能的同时,也在不断地提高硫的负载量,以求达到更高的能量密度。本文主要从四个方面进行了相关总结:首先,概述了锂硫电池最新发展状况;其次,概要介绍了锂硫电池中存在的反应机理和阻碍锂硫电池发展的主要问题;再次,重点总结了提高锂硫电池的性能和载硫量方面的研究进展,并简单介绍了面载量、面容量和电解液与硫的比值对电池整体性能的影响;最后,总结和展望了锂硫电池未来可能的发展方向。 相似文献
4.
随着化石能源的日渐枯竭、能源危机和环境问题的日益突出,开发环境友好的二次电池能源体系迫在眉睫。锂硫电池作为一种新型的储能电池,其理论比容量高达1 675 mAh/g,质量密度可达2 600 Wh/kg,且原材料来源广、成本低等优点,使得其有望代替锂离子电池成为下一代理想的能源电池。近年来,可穿戴电子设备、智能纺织品的出现,对储能电池提出了更高的要求—柔性,因此开发柔性锂硫电池已经成为研究热点。作为锂硫电池的重要组成部分,柔性正极材料的研究和制备对柔性锂硫电池系统的开发至关重要。从锂硫电池柔性正极基体材料入手,对碳材料、导电聚合物材料和新兴的MOF材料等3个方面进行了分类总结,详细阐述了各自制备方法及对柔性正极性能影响。碳材料高的导电性和多孔结构设计、导电聚合物和MOF材料对多硫化物优异的化学吸附作用,均有助于抑制多硫化物的"穿梭效应",提升柔性锂硫电池的长循环电化学稳定性能。最后分析了现有锂硫电池柔性正极材料存在的缺陷与问题,对未来发展方向做出了展望。这将为开发新型的锂硫电池用柔性正极材料提供指导,同时为其它二次电池柔性正极材料开发过程中的共性问题提供实验和理论依据。 相似文献
5.
锂硫电池因高比容量和高能量密度引起了研究者们的广泛关注,成为新型锂电池研究热点之一。隔膜作为锂硫电池的重要组成部分,是提高电池各方面性能的关键。现阶段锂硫电池隔膜改性工作主要集中于高性能涂层材料的设计与合成以及新型隔膜材料的开发。本文综述了锂硫电池隔膜改性的研究现状,分别从碳涂层隔膜、元素掺杂碳涂层隔膜、金属氧化物/碳复合涂层隔膜、新型薄膜材料和多层隔膜等五个方面进行介绍,指出了从隔膜入手提高导电性、抑制穿梭效应、减轻锂电极腐蚀,从而提高电池电化学性能的重要性。 相似文献
6.
7.
8.
采用球磨混合及热复合法制备硫/BP2000复合正极材料(含硫量42%(质量分数)),分别以PTFE、明胶和PEO作为粘结剂,考察了不同粘结剂对锂-硫电池电化学性能的影响。采用热重分析(TGA)、X射线衍射(XRD)、循环伏安法(CV)和恒流充放电表征其物化性能和电化学性能。结果表明,明胶和PTFE对于提高硫正极的电化学性能和维持硫正极的循环稳定性具有积极意义。其中,在0.2 C充放电时,PTFE作粘结剂的电池循环50次后比容量保持741.2 mAh/g,明胶作粘结剂的电池循环50次后放电比容量保持788 mAh/g(按单质硫的质量计算)。 相似文献
9.
采用乙炔黑、土状石墨、Cabot Vulcan XC-72炭黑、Cabot Bp2000超级导电炭黑作为硫载体制备了一系列含硫复合材料。通过X射线粉末晶体衍射(XRD)、扫描电子显微镜(SEM)、比表面积分析(BET)等分析测试手段对材料的物理性能进行表征,利用电池测试系统对材料的电化学性能进行了测试。结果表明基体材料表面结构、孔径分布及比表面积等因素都对复合材料的电化学性能造成影响,综合性能最好的基体材料为BP2000超级导电炭黑,其初始放电比容量高达1385.1mAh/g,在室温下经过30次循环之后电池放电比容量仍保持在1080.2mAh/g,容量保持率高达78%。 相似文献
10.
12.
13.
锂硫电池因为比当前锂离子电池更高的能量密度和更低的成本,因此有望成为下一代储能设备,但是锂硫电池由于“穿梭效应”而影响快速发展。随着理论计算的发展,综述了近几年锂硫电池正极材料的第一性原理计算,将正极材料分为三类:碳骨架材料、金属化合物材料、其他种类材料。通过第一性原理计算正极材料对多硫化锂的吸附,从微观角度认识吸附机制,并展望理论计算在锂硫电池中的发展前景,为锂硫电池正极材料的选取提供方向。 相似文献
14.
15.
采用热熔法在185℃下使单质硫(S8)发生开环反应得到线性硫,然后再与有机材料双环戊二烯(DCPD)进行耦合,使线性硫接枝到双环戊二烯上,得到新型富硫的有机聚合材料(S-DCPD)。通过核磁、拉曼、X射线衍射和x射线光电子能谱表征证实单质硫接枝到双环戊二烯上面。这种以化学键方式固定单质硫的方法,有效地缓解了锂-硫电池中的“穿梭效应”问题。合成了一系列具有不同硫含量的S-DCPD材料,其中60%硫含量的S-DCPD综合电化学性能最优,库仑效率达到98%以上。 相似文献
16.
以Ce(OH)4为原料, 采用热分解法制备得到粒径小于10 nm的CeO2纳米晶。制备得到的CeO2纳米晶表面存在丰富的羟基和硝基, 作为硫正极添加剂, 一方面可以有效吸附硫和多硫化锂, 抑制多硫化锂在电解液中的溶解和穿梭效应的发生, 进而提高电池的循环性能。同时, 可以改善电极和电解液之间的接触性, 提高活性物质利用率。其中, 含有5wt%的CeO2纳米晶的锂硫电池在0.1C和0.5C(1C=1675 mA/g)的充放电倍率下, 100周之后放电比容量分别达750 mAh/g和598 mAh/g, 远高于不含有CeO2纳米晶的523 mAh/g和395 mAh/g, 同时, 循环前后的电池阻抗也明显降低。 相似文献
17.
18.
在能源问题日益严重的今天,硫正极材料探索与研究越来越受到人们的关注。主要从硫/纳米金属氧化物、硫/导电高聚物、硫/碳、硫/碳/导电高聚物4个方面综述了各种硫正极复合材料的优缺点、制备及改性的方法,重点介绍了不同的复合材料对电化学性能的影响,为新型硫正极材料的制备和改性指明了方向。 相似文献
19.
采用分段加热法合成了不同管径、不同硫含量的单质硫-多壁碳纳米管(S-MWCNT)复合材料,利用电化学方法、SEM、TEM、比表面吸附等分析方法,筛选出以10~20 nm直径的MWCNT为核,质量分数85%硫为壳的最优化条件下的复合材料。SEM测试显示单质硫均匀填充到MWCNT的中空管和层间的孔中形成了结构稳定的复合物。在最优化的条件下,复合材料首次放电比容量达1 272.8 mAh·g-1,活性物质利用率为76.0%,循环至第80周时放电容量还保持在720.1 mAh·g-1,容量保持率高达64.4%。与未添加MWCNT的单质硫电极相比,硫复合电极活性物质的利用率和循环性能都得到了较大的改善。 相似文献
20.
锂硫电池被认为是新一代低成本、高能量密度的储能系统。但由于硫正极导电性差、穿梭效应严重以及氧化还原反应速率慢, 导致电池容量衰减严重, 倍率性能较差。本研究以柠檬酸钠为碳源制备了具有三维中空结构的多孔碳材料, 并在其骨架上负载钴纳米颗粒后作为硫正极的载体。引入的钴纳米颗粒可有效吸附多硫化物, 提升其转化反应的动力学, 进而明显改善电池的循环和倍率性能。所得的钴掺杂复合硫正极在0.5C (1C=1672 mAh·g-1)的倍率下首圈放电比容量高达1280 mAh·g-1, 在1C的倍率下稳定循环200圈后可保持770 mAh·g-1, 并且具有优异的倍率性能, 即使在10C的大电流密度下仍可稳定循环。 相似文献