首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
为提高传统先进绝热压缩空气储能(AA-CAES)系统性能,在原系统上耦合了太阳能辅热子系统,并对耦合太阳能辅热的AA-CAES系统性能进行了研究。结果表明:在相同压缩机级数下,冷罐和热罐温度均随膨胀机级数的增加缓慢升高;在相同膨胀机级数下,冷罐和热罐温度随压缩机级数的增加逐渐降低;当压缩机与膨胀机级数相等时,系统储能效率、储能密度和耦合储能效率均比二者级数不等时更高;随着换热器效能的提高,系统冷罐和热罐温度升高、膨胀功和压缩功增大,而系统储能效率和耦合储能效率先提高后降低。  相似文献   

2.
为深入分析耦合太阳能辅热的先进绝热压缩空气储能(AA-CAES+CSP)系统的运行特性,在先进绝热压缩空气储能(AA-CAES)系统基础上建立相关模型,对比分析这2个系统性能,并探究关键参数对AA-CAES+CSP系统性能影响。结果表明:相比于AA-CAES系统,AA-CAES+CSP系统循环效率提高7.90%,储能密度提高4.46%;当压缩机级数N1=膨胀机级数N2=级数N时,循环效率和储能密度最高,N1与N2相差越小,系统性能越优;随着储气室对流换热系数hc的增大,循环效率先大幅度降低,后缓慢增大,储能密度则持续增大,且在hc较小时,N越大,循环效率越低,而当hc较大时则相反,储能密度则随N的增大而持续增大,但N越大,同一hc对系统性能的影响越小;循环效率随储气室最大压比的增大而减小,储能密度则相反,且在最大压比较小时,N越大,循环效率越小,储能密度越大,但当N较大时,N越大,循环效率和储能密度均越大。  相似文献   

3.
为深入研究带太阳能辅热的先进绝热压缩空气储能(AA-CAES+CSP)系统热力学性能,建立系统关键部件热力学模型,利用Matlab模拟计算,分析辅热子系统加入方式及外界因素对系统性能影响。结果表明:首次启动,以空气先流经储能蓄热子系统再流经辅热蓄热子系统运行效果更佳,而长久稳定运行,则以空气先流经辅热蓄热子系统再流经储能蓄热子系统运行效果更佳;稳定工况下,集热温度越高,循环效率和储能密度越大,但过高的集热温度会使循环蓄热介质温度过高,当超过其临界温度时,会由液态变为气态,导致换热效果变差,影响换热器性能;在研究参数范围内,环境温度越低,循环效率越高;任一系统均有一个使循环结束后,储气室无需借助外部作用,其压比和温度就自行恢复至初始值的循环稳定间隔时间。  相似文献   

4.
为了研究储气室和工质种类对带太阳能辅热的先进绝热压缩空气储能(AA-CAES+CSP)系统热力学性能的影响,基于空气和二氧化碳2种工质,以及恒温和恒壁温2种储气室,提出了4种运行模式,并利用Matlab软件进行数值模拟,比较不同模式下的系统性能差异,并研究了系统性能随关键设备参数和环境参数变化的规律。结果表明:当系统采用恒温储气室和二氧化碳时的循环效率和储能密度最高;循环效率和储能密度随着集热温度的升高而升高,但是集热温度过低的换热介质会冷却空气,降低空气做功能力,此时应切断辅热子系统;环境温度的升高会使循环效率和储能密度均下降;随着换热器效能的升高,4种模式下系统的循环效率均先升高后降低,但储能密度的变化规律不相同。  相似文献   

5.
为了研究释能过程中膨胀机运行特性对先进绝热压缩空气储能(AA-CAES)系统性能的影响,提出3种膨胀机运行方式:定压运行、定滑运行和滑压运行,并建立AA-CAES系统热力学模型。使用数值计算的方法,对比3种方式的系统性能差异,并分析关键参数对采用不同方式的系统性能的影响。计算结果表明:基本运行参数相同时,膨胀机采用滑压运行时储能效率和储能密度最大;适当调整储气压比差值,可改善3种方式的系统性能;存在最佳换热器效能使得3种运行方式的储能效率最大;膨胀机效率下降系数对定滑方式的影响最大;3种方式的稳定间隔时间较接近,对流换热系数增加到一定值时,不存在稳定间隔时间。  相似文献   

6.
李鹏  胡庆亚  韩中合 《太阳能学报》2022,43(11):424-432
为解决传统耦合太阳能辅热的先进绝热压缩空气储能(AA-CAES+CSP)系统热能损失大的问题,提出其释能过程的改进方案。从热力学和经济学角度对改进前后的系统性能进行比较分析。结果表明,改进系统的热、冷能性能系数及年利润率显著提高。同时,进行参数敏感性分析,结果表明:集热温度升高,改进系统的冷能性能系数下降,两系统其他指标上升;储气室压差越大,系统年利润率越高,而其他指标越低;压缩/膨胀功率增大,年利润率减小,而其他指标增大。此外,以循环效率和年利润率为目标函数,采用灰狼算法对系统进行多目标优化,设置较高集热温度、压缩/膨胀功率和较低储气室压比时,更易获得最佳系统性能。  相似文献   

7.
为获得先进绝热压缩空气储能(AA-CAES)系统较高的效率与较好的经济性,设计2种输出策略。建立AA-CAES模型与和太阳能相结合的复合储能系统模型,通过数值模拟,比较2个系统在不同输出方式下的热力学特性与经济性能,并研究了基本参数的敏感性问题。结果表明:原系统在采用方案1时循环效率最高,复合系统在采用方案2时年利润率最大。储能功率的提高对2个系统的循环效率与年利润率有积极影响,而释能功率的提高对其有消极影响。当储释能时间间隔延长时,不同方案下2个系统的循环效率与年利润率均降低。  相似文献   

8.
为解决压缩空气储能系统储能密度和效率低的问题,建立了基于地下储气室的多级回热式跨临界压缩二氧化碳储能系统(Compress Carbon Dioxide Energy storage,TC-CCES)热力学模型及■分析模型,采用二氧化碳代替空气作为存储介质,对系统进行热力学性能分析和敏感性分析。结果表明:TC-CCES的储能密度达到57.29 kW·h/m~3,是先进绝热压缩空气储能系统(Advanced adiabatic CAES,AA-CAES)的2~25倍,储能效率和■效率分别为58.41%和67.89%,均高于AA-CAES;在TC-CCES中,储能过程的压缩机级间冷却器、释能过程的膨胀再热器以及回热系统中热泵■损失较大,通过提高系统储能压力、释能压力以及降低系统低压储气室入口压力,可以提高系统的储能效率和■效率。  相似文献   

9.
为了提高机组灵活性,提出了一种热电联产机组、先进绝热压缩空气储能(AA-CAES)系统和热网耦合集成的储能型燃煤热电联产系统。对某350 MW热电联产机组与30 MWAA-CAES系统耦合集成系统的能流特性进行数值研究,分析了独立运行及耦合运行2种模式下系统的能源综合利用水平和调节范围。结果表明:以80%额定供热负荷为例,在同等供热量时,集成系统的能源利用率可提升1.10百分点,最小负荷率降低了11.69百分点,最大发电能力提升22.24 MW(约为额定功率的6.35%),单次循环节煤27.26 t;其他供热工况下结果与此类似,证明该先进储能型燃煤热电联产系统在热电解耦、提高灵活性、清洁供暖、能源利用等方面具有优势。  相似文献   

10.
为解决传统压缩空气储能系统(CAES)依赖化石燃料以及其他新型CAES透平初温受到限制的问题,提出太阳能蓄热式压缩空气储能(SHS-CAES)系统。对槽式太阳能导热油蓄热式CAES和塔式太阳能熔融盐蓄热式CAES进行热力性能分析,储电折合转化系数分别为78.65%和109.71%,太阳能折算发电效率分别为19.54%和34.43%,说明该系统可有效提高系统储电效率和太阳能利用效率;同时全面揭示系统热力特性随透平初温、储能压力和释能压力的变化规律。  相似文献   

11.
基于全回热压缩空气储能系统的概念,搭建10MW全回热压缩空气储能系统。分析压缩机和膨胀机的级数对全回热压缩空气储能系统电回转效率的影响,同时采用分析法研究全回热压缩空气储能系统的热经济性。得出2级~4级全回热压缩空气储能系统,其电回转效率为70.2%~75.3%;随着压缩机和膨胀机的级数增加,电回转效率降低;压缩机、膨胀机、回热换热器、地下含水层的损失系数分别为:30.9%~35.3%、23.3%~24.5%、37.4%~41.5%和3.9%~4.0%。  相似文献   

12.
压缩空气储能技术是具有较大发展前景的大规模储能技术之一,具有广阔的发展前景。使用Aspen Plus软件以传统压缩空气储能系统为例进行流程模拟,运用分析方法对模拟结果进行热力性能分析。分析结果表明,燃烧室的损失是系统各设备损失中最大的。同时还对压缩空气储能系统各个组成部件的运行效率与储能系统的损失之间的关系进行了敏感性分析,分析结果表明,对系统效率影响最大的参数为燃烧室效率,最小的参数为膨胀透平绝热效率。  相似文献   

13.
韩中合  庞永超 《太阳能学报》2018,39(6):1566-1573
为了更精确地研究蓄热系统对AA-CAES的影响,对传统蓄热系统热力学模型进行改进,并以3种蓄热介质为例,分析蓄热介质对换热器效能的影响。考虑蓄热介质热物性的限制,研究不同蓄热介质构成的储能系统在储能效率、储能密度等方面的特点。结果表明:换热器效能在储能和释能阶段存在差异,改进蓄热系统模型后储能效率降低1.04%;当换热器结构和空气流量均相同时,以水为蓄热介质的换热器效能最高;蓄热介质的热物性会影响储气室最高压力,导致系统在储能效率、储热效率、储能密度、蓄热系统运行压力等方面存在差异。  相似文献   

14.
为研究耦合超临界二氧化碳循环的压缩空气储能冷热电联供系统特性,以循环效率、?效率、度电成本及度电综合环境效应指数为指标,对所提出系统进行综合性能分析与参数分析,并将其与传统压缩空气储能系统进行对比。基于遗传算法,构建2个多目标函数组合,对所提出系统展开多目标优化。结果表明:相比传统压缩空气储能系统,所提出系统的循环效率及效率分别提升12.89%和5.37%,度电成本及度电综合环境效应指数分别降低0.32美分/(kW·h)及2.50;随着低压燃气透平进口压力的升高,循环效率、?效率、度电成本的变化均存在拐点;组合(1)对应的最优循环效率、?效率及度电成本分别为61.90%、52.77%和6.36美分/(kW·h);组合(2)对应的最优?效率、度电成本及度电综合环境效应指数分别为52.71%、6.35美分/(kW·h)和84.53。  相似文献   

15.
为深入研究不同工质和输出方式对太阳能-先进绝热压缩空气/二氧化碳联合储能系统性能的影响,提出4种运行方案.通过仿真计算,对比分析4种不同方案下系统的热力学与经济学特性,并研究关键参数对系统性能的影响.结果表明:采用二氧化碳为工质,只输出电能时系统的储能效率最高.而采用二氧化碳为工质,同时输出电能和热能时系统的年利润率最...  相似文献   

16.
针对先进绝热压缩空气储能(AA-CAES)系统储能方式与输出方式单一以及■效率低的问题,提出了不同输出方式和储能方式组合的4种运行方案,并对不同运行方案下系统参数进行了优化。从热力学和经济学角度出发,讨论了储能功率、储气室最大压比和压缩机进口空气温度对4种运行方案下系统性能的影响,并采用NSGA-Ⅱ算法,以■密度和年利率为目标函数对系统进行了多目标优化。结果表明:方案3的系统■效率和年利率最高,方案4的系统■密度最大;随着储能功率的增加,4种运行方案下的系统■效率和年利率升高,而■密度降低;随着储气室最大压比的增大,系统的■效率和年利率降低,而■密度增大;随着压缩机进口空气温度的升高,系统年利率和■效率降低,方案3和方案4的系统■密度增大,而方案1和方案2的系统■密度降低;方案1~方案4的最佳■密度分别为5.92 MJ/m3、6.73 MJ/m3、9.00 MJ/m3和9.84 MJ/m3,最优年利率分别为19.19%、16.04%、25.40%和21.25%。  相似文献   

17.
提出一种非等比压缩结构的储能系统,在此基础上提出4种具体的系统结构方案,并与以往文献提到的等比压缩结构的储能系统进行对比分析。结果发现:在总压缩比相同的情况下,等比压缩结构的先进绝热压缩空气储能(AA-CAES)系统的储能密度随压缩级数的增大而减小,储能效率随压缩级数的增大而升高;对于非等比压缩结构的储能系统,储热介质能达到的温度越高,则系统的储能密度越大;用2种储热介质分阶段存储压缩热,可减小换热器的换热温差,降低系统的不可逆损失,从而提高系统的储能效率。  相似文献   

18.
为研究基于先进绝热压缩空气储能(AA-CAES)的三联产系统在不同工质和蓄热介质下的运行特性,以空气和CO2为工质,水和THERMINOL 66为蓄热介质,提出4种运行方案,并采用能量分析和(火用)分析方法比较4种运行方案下系统的性能差异,研究低温蓄热介质温度和对流传热系数对系统性能的影响,最后以(火用)效率和储能密度为目标函数,采用非支配排序遗传算法(NSGA-II)进行多目标优化。结果表明:以空气为工质、水为蓄热介质时,系统(火用)效率和储能密度最高;4种运行方案中第二级换热器产生的(火用)损均最大;低温蓄热介质温度越低,(火用)效率越高,而储能密度越低;对流传热系数增加时,(火用)效率随之降低,而储能密度先降低后升高;当采用较低温度的蓄热介质和中等对流传热系数时,系统可获得最优性能。  相似文献   

19.
为解决相变储能箱耦合太阳能空气源热泵供热系统关键参数的设计问题,设计了基于TRNSYS软件的相变储能箱耦合太阳能空气源热泵供热系统模型。利用GENOPT软件调用Hooke Jeeves算法,以费用年值为优化函数,针对集热器面积、空气源热泵制热量、集热器倾角、集热器方位角、相变储能箱体积以及体积因子等关键参数进行优化分析,并以单位体积下相变储能箱蓄/放热量、集热器逐月平均效率及系统性能系数COPS为优化前后评价指标。结果表明:集热器面积取187 m2、空气源热泵制热量取40.5 kW、集热器倾角取44.1°、集热器方位角取-1°、相变储能箱体积取4 m3、体积因子取0.1时得最小费用年值,费用年值同比降低21%;优化后单位体积下,相变储能箱年放热量提升了15.1%,年蓄热量提升了16.5%;以系统性能系数COPS为评价指标,优化后系统整体性能受环境因素影响下降,系统更趋于稳定运行。  相似文献   

20.
压缩空气储能技术具有提升风能与太阳能等可再生资源电能质量的潜力,通过此项技术实现间歇性与不稳定性可再生电力的有效储存,进而在电网负荷高峰期以优质电力的形式稳定输出.结合热力学分析方法设计了储能功率56.58 MW,释能输出功率154.76 MW的压缩空气储能系统.在释能阶段透平机组配置上,参照GE 9171E燃机布置第二级透平入口参数,并以其812.41 K高温烟气余热提供第一级透平工质所需全部热量,无需为第一级透平配备专门燃烧器.在此思路下设计的压缩空气储能系统,热耗可降低至3783.96 kJ/(kW·h),储能系统的能量转换效率也高达56.11%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号