首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 125 毫秒
1.
25CrMoVNi钢由120 t EAF-LF-RH脱气-φ600 mm圆坯连铸工艺生产,EAF出钢时加Al预脱气使[Al]s≥0.030%,并加入石灰造渣预精炼,LF精炼时炉渣表面加Al粒扩散脱氧,LF精炼渣的组成为(/%):53~57CaO,10~13SiO2,27~28Al2O3,6~9MgO,0.09~0.10MnO。RH脱气精炼结果表明,RH后T[O]由脱气前0.001 3%~0.001 5%降至0.000 5%;钢中TCa由0.001 9%降至0.000 9%~0.001 7%;夹杂物发生MgO·Al2O3→(MgO)z(CaO)x(Al2O3)y→(CaO)x(Al2O3)y的转变;最后以尖晶石类固相夹杂物数量迅速减少,以钙铝酸盐类的液相夹杂物数量呈现出先增加后减少,钢中夹杂物由6.7个/mm2下降至2.7个/mm2  相似文献   

2.
王昆鹏  王郢  徐建飞  陈廷军  谢伟  姜敏 《钢铁》2022,57(6):42-49
 研究了轴承钢LF精炼和RH真空处理过程各类夹杂物的成分、种类和数量变化,并结合热力学模拟计算了夹杂物与钢液的界面参数,并对试验结果进行分析讨论。夹杂物分析结果表明,精炼25 min后,脱氧产物Al2O3消失,钢中夹杂物以纯尖晶石、含少量CaO的尖晶石、CaO·2Al2O3和CaO·Al2O3为主。继续精炼65 min至LF精炼结束,钢中夹杂物仍以纯尖晶石、含少量CaO的尖晶石、CaO·2Al2O3和CaO·Al2O3为主。RH真空处理25 min后,钢中夹杂物总数量较LF精炼结束降低75%,其中,纯尖晶石和含少量CaO的尖晶石去除率分别为99.5%和93.2%,CaO·2Al2O3去除率为67%。RH破空后钢中夹杂物以液态钙铝酸盐CaO·Al2O3和12CaO·7Al2O3为主。精炼过程尖晶石类夹杂物尺寸集中在10 μm以下,尺寸大于20 μm夹杂物主要为处于液相区的钙铝酸盐,这些钙铝酸盐在LF精炼前期就已经存在。与钢水接触角大于90°的固态夹杂物纯尖晶石、含少量CaO的尖晶石和CaO·2Al2O3在RH真空处理过程容易去除,与钢水接触角小于90°的液态夹杂物CaO·Al2O3和12CaO·7Al2O3不易去除。因此,将LF精炼结束的夹杂物控制为固态夹杂物有利于RH真空处理过程夹杂物的高效去除。热力学计算结果表明,当钢中w(T[O])为0.001 0%、w([Mg])大于0.000 18%时,脱氧产物Al2O3热力学上就不能稳定存在。铝脱氧、高碱度渣精炼条件下很难稳定地获得固态Al2O3夹杂物。为获得完全固态尖晶石或高熔点钙铝酸盐夹杂物,钢中w([Ca])需控制在0.000 1%以内。钢中w([Ca])大于0.000 2%,就具备生成液态夹杂物的热力学条件。  相似文献   

3.
为了研究120 t BOF-LF-RH-160 mm×160 mm坯CC工艺生产的铝脱氧20钢(/%:0.13~0.23C,0.17~0.37Si,0.35~0.65Mn,≤0.035P,≤0.035S,0.020~0.050Al)中非金属夹杂物的控制技术,对LF精炼过程中脱氧剂加入时机进行调整,并对精炼过程中非金属夹杂物类型与夹杂物数量进行分析。结果表明,转炉出钢后采用铝块脱氧,LF精炼进站非金属夹杂物主要为Al2O3,精炼结束前部分夹杂物由Al2O3转变为Al2O3·CaO,RH结束后非金属夹杂物密度3~4个/mm2,铸坯氧含量(7.48~8.18)×10-6;而转炉出钢后采用硅锰进行脱氧,精炼结束前采用铝线,精炼过程中夹杂物主要为MnO·SiO2,CaO含量小于5%,精炼结束非金属夹杂物控制为Al2O3,RH真空处理后,非金属夹杂物密度小于1.5个/mm2,铸坯氧含量(4.94~5.53)×10-6。因此,针对采用“BOF-LFRH-CC”工艺流程生产的含铝钢,提出精炼结束前将非金属夹杂物控制为Al2O3,同时运用RH真空高效去除夹杂物,以提高钢水的洁净度。  相似文献   

4.
GCr15钢的生产流程为120 t BOF-LF-RH-CC工艺。BOF出钢加200 kg铝块进行强脱氧,同时LF过程控制Al含量至0.030%~0.045%,LF结束夹杂物主要为MgO·Al2O3,RH真空后MgO·Al2O3夹杂物被去除,钢水中夹杂物以钙铝酸盐为主,但是连铸浇铸过程MgO·Al2O3夹杂物又会重新生成。因为LF精炼过程Al-MgO和C-MgO反应的存在,高碳铝脱氧GCr15轴承钢LF精炼结束更容易获得MgO·Al2O3夹杂物,并促进中间包钢水MgO·Al2O3夹杂物重新生成。当BOF出钢仅加40 kg铝块进行预脱氧,LF结束钢水MgO·Al2O3夹杂物数量显著降低,同时中间包钢水中MgO·Al2O3夹杂物不再重新生成。此外,将低钛低铝硅铁由出钢过程改为LF过程加入,也可以有效控制钢水中MgO·Al2O3夹杂物数量。   相似文献   

5.
吴辉强  顾超  林路  包燕平 《特殊钢》2016,37(1):34-36
SK5 弹簧钢(/% :0. 75 ~0. 84C, ≤0. 35Si, ≤0. 40Mn, ≤0. 035P,≤0.030S)经 100 t EAF-LF-VD-CC 流程生产。通过EAF出钢加硅镒合金和铝铁进行预脱氧,LF精炼过程添加80~150 kg铝镁钙和少量硅锭合金进行复合铝脱氧,精炼渣碱度11.13,(CaO)/(Al2O3) =4. 98等工艺措施,脱氧效果较明显,铸坯中平均全氧含量达到 11 x 10-6项,铸坯中氮含量达到35 x 10-6。冶炼过程夹杂物种类按纯Al2O3>硫化物一'MgO - A12O3 - CaO—MgO •Al2O3 • CaO • SiO2变化,铸坯中夹杂物主要为CaO-A12O3 • SiO2 - MgO系,其塑性化程度可通过调整精炼渣成分、降低精炼渣熔点实现进一步优化。  相似文献   

6.
为研究淬火轨冶炼过程中典型夹杂物的变化规律,进一步提高钢中非金属夹杂物控制水平,以国内某钢厂“150 t转炉炼钢→150 t LF精炼→VD脱气→280 mm×380 mm方坯连铸”工艺生产的淬火轨为研究对象,对冶炼过程系统取样,结合氧氮分析、钢液成分分析以及钢中非金属夹杂物分析,从夹杂物成分、数密度和尺寸等方面研究其变化规律。研究结果表明,淬火轨冶炼过程氧氮含量和夹杂物数密度持续降低,夹杂物去除效果明显;LF进站钢中典型夹杂物主要成分为SiO2-MnO-Al2O3,主要是转炉采用硅锰脱氧合金化产生的脱氧产物;LF合金化后典型夹杂物主要成分为CaO-SiO2-Al2O3-MgO,夹杂物中CaO和Al2O3含量显著升高,SiO2和MnO含量降低,主要是合金辅料带入的Ca和Als与钢中的溶解氧或氧化物夹杂发生反应所致,MgO含量升高与钢包耐火材料侵蚀有关;LF出站钢中典型夹...  相似文献   

7.
杜广巍  郭汉杰 《特殊钢》2016,37(4):18-22
55SiCr钢280 mm×325 mm铸坯(/%:0.55C,1.42Si,0.67Mn,0.008S,0.67Cr)的冶炼流程为80 t BOF-LF-RH-CC工艺。通过BOF出钢加Al和硅铁合金,同时加入精炼渣,控制精炼过程渣碱度R(CaO/SiO2)为2.0左右,RH≥20 min,软吹搅拌≥15 min,控制钢中夹杂物转变,得到洁净弹簧钢55SiCr。分析结果表明,LF精炼过程中夹杂物由早期的Al2O3-SiO2-MnO和Al2O3夹杂将逐渐转变为Al2O3-CaO-SiO2夹杂,RH真空处理后夹杂物全部转变为Al2O3-CaO-SiO2夹杂,LF开始精炼T[O]和[N]分别为36×10-6和26×10-6,铸坯T[O]、[N]分别为7×10-6和43×10-6,铸坯中夹杂物主要为Al2O3-CaO-SiO2和Al2O3,尺寸≤10μm。   相似文献   

8.
X80管线钢LF-RH二次精炼过程夹杂物行为及控制   总被引:1,自引:0,他引:1  
研究了210 t BOF-LF-RH-CC工艺流程生产X80管线钢(%:0.041~0.044C、0.15Si、1.78~1.80Mn、0.007~0.010P、0.000 8~0.001 2S、0.039~0.047[Al]s)时精炼过程中夹杂物的变化。在BOF出钢阶段采用加Al强脱氧(0.01%~0.02%[Al]s),LF精炼过程采用高碱度、强还原性精炼渣(精炼渣成分%:50~58CaO、7~10MgO、20~25Al2O3、4~7SiO2、0.5~1.4TFe),炉渣和钢液反应活跃,使得钢中Al2O3夹杂物很快向液态钙铝酸盐和部分液态CaO-MgO-Al2O3复合夹杂物转变。液态夹杂物通过碰撞、聚合、长大及上浮去除,提高了钢液的洁净度。浇铸前T[O]降到(7~10)×10-6,钢中夹杂物尺寸在3~5μm,试验炉次的热轧板内未发现大尺寸的低熔点钙铝酸盐类长条夹杂物。  相似文献   

9.
通过电弧炉出钢加铝铁、硅铁脱氧,LF精炼初渣的组分为(/%:27.39~37.34 Al2O3,38.42~38.68 CaO,14.20~18.38 SiO2,8.50~10.72 MgO,0.82~0.89 FeO,0.27~0.33 MnO,0.69~0.74 S,0.66~0.75TiO2,(CaO)/(SiO2)=2.09~2.72,(CaO)/(Al2O3)=1.04~1.40),LF终点T[O]为0.0012%~0.0019%,T[N]为0.0043%~0.0050%,[Ti]0.002%和[Ca]0.006%~0.009%。GCr15轴承钢LF精炼终点氧化物夹杂分析结果表明,钢中主要氧化物夹杂为镁铝尖晶石(MgO·Al2O3)和钙镁铝尖晶石氧化物(CaO·MgO·Al2O3)。镁铝尖晶石平均尺寸低于0.5μm,当有MnS、TiN等在其上析出后平均尺寸增大。钙镁铝尖晶石平均尺寸通常在2μm以上,在精炼温度下呈液态,易在钢中聚集长大,其尺寸(1.39~2.12μm)比固态的钙镁铝尖晶石-MnS夹杂物大,且更被精炼渣吸收并上浮去除。随着精炼过程钢液中的硫含量降低,以这两类尖晶石为核心的含MnS的复合夹杂物的平均尺寸降低。适当降低精炼终点渣中MgO的含量、光学碱度和黏度可以减少钢中夹杂物的数量并降低其平均尺寸。  相似文献   

10.
曾溢彬  包燕平  赵家七  王敏 《钢铁》2022,57(8):69-77
 某钢厂生产的55SiCr弹簧钢采用硅锰脱氧工艺,但在其冶炼过程中存在大量尖晶石类夹杂物,对最终产品的性能十分不利。尖晶石等硬、脆性夹杂物是弹簧在服役过程中疲劳断裂的主要因素之一,因此为明确弹簧钢中该类夹杂物的来源,进而控制并去除钢中非金属夹杂物,通过夹杂物自动分析、扫描电镜和能谱分析等手段,结合FactSage热力学计算分析了55SiCr弹簧钢冶炼过程夹杂物的演变及主要夹杂物的形成机理。分析结果表明,LF精炼后钢中夹杂物数量大幅上升,且其平均成分偏向SiO2-Al2O3-CaO三元相图中高熔点区域;夹杂物主要以SiO2·Al2O3·CaO·MgO为主,多表现为钙铝酸盐包裹或半包裹尖晶石的复合夹杂物类形态,此外还有少量单独的尖晶石夹杂物存在于钢中。对于上述夹杂物的形成及演变进行热力学计算,结果表明,钢液中Mg、Al含量上升将导致钢中析出大量尖晶石夹杂物,并与液态夹杂结合形成含镁复相夹杂物;同时,钢液成分的变化也会导致精炼过程生成的SiO2·Al2O3·CaO·MgO类夹杂物中MgO、Al2O3含量大幅增加,在复合夹杂物内部析出尖晶石相。因此,为减少硅锰脱氧弹簧钢中尖晶石类硬脆性夹杂物的生成,需要严格控制钢中Mg、Al含量,尽可能降低夹杂物中MgO、Al2O3含量,以实现对弹簧钢中非金属夹杂物的塑性化控制。  相似文献   

11.
研究的0.80%~0.82%C帘线钢的生产流程为80 t:BOF-CAS-LF-VD-150 mm×150 mm CC工艺。通过顶底复吹转炉出钢过程加入300 kg金属锰和200 kg高纯硅进行硅锰复合脱氧,LF过程先造碱度(CaO/SiO2)2.04的精炼渣,再将精炼渣碱度(CaO/SiO2)降至0.86,保持渣中Al2O3含量为~5%,来控制钢中非金属夹杂物的塑性转变。结果表明,铸坯平均总氧含量为16×10-6,氮含量控制在50×10-6左右,CAS(密封吹氩调成分)过程钢中夹杂物主要是MnO-Al2O3-SiO2;LF、VD过程钢中和铸坯中夹杂物主要是CaO-Al2O3-SiO2-MgO系,该类夹杂物尺寸偏小(2~3μm),分布在1 400℃低熔点区域附近。  相似文献   

12.
通过工业试验取样研究了X80管线钢精炼过程夹杂物的类型、尺寸、成分等变化规律,并结合FactSage8.1软件对钙处理和钢液冷却凝固过程夹杂物的演变机理进行了热力学计算分析.试验结果表明,LF精炼结束时夹杂物主要为MgO–Al2O3和MgO–Al2O3–CaO,数量占比分别为25%、75%,其尺寸主要分布在1~5μm之间,且1~2μm和2~5μm的夹杂物比例分别为56.0%、37.3%;RH精炼中T[O]、[N]质量分数分别由LF精炼结束时的0.0022%、0.0059%降低至0.0010%、0.0035%,夹杂物数量密度由LF结束约23.07 mm–2降低至7.44 mm–2,夹杂物去除率约67.8%;钙处理时,夹杂物主要为MgO–Al2O3–CaO和CaS–Al2O3–CaO系,夹杂物中CaS平均质量分数由RH精炼结束时的8%增加至36%,CaO平均质量分数由24%减少至12%;软吹结束时,尺寸<40μ...  相似文献   

13.
在分析"120 t LD→LF→RH→150 mm×150 mm连铸坯→线材轧制"工艺流程生产的弹簧钢55SiCrA的基础上,应用Factsage热力学计算软件进行热力学计算,对精炼工艺进行优化研究.结果 表明:精炼渣系中含SiO241%~ 46%、CaO 36%~41%、Al2O30%~3%、MgO 10%,渣碱度0...  相似文献   

14.
熊玉彰  张贤忠 《特殊钢》2018,39(4):48-50
试验的36MnVNS4含硫非调质钢(/%:0.36C,0.66Si,1.00Mn,0.010P,0.045S,0.26V,0.0110N)的冶炼工艺流程为铁水+废钢-70 t EBT EAF-LF-方坯连铸-轧制。研究了LF 19.82%Al2O3,(CaO)/(SiO2)=2.64和14.63%Al2O3,(CaO)/(SiO2)=2.15两种渣系精炼对软吹后钢中氧含量,喂S线后S的收得率以及钢中夹杂物成分和形貌的影响。结果表明,高碱度白渣精炼工艺有利于钢中氧含量的降低,但不利于钢中硫含量的稳定;精炼渣碱度(CaO)/(SiO2)由2.64降低至2.15时,有利于钢中硫含量的稳定控制,硫的回收率由35%提高至75%;两种精炼工艺下钢中的夹杂物分布、形貌和组成基本相同。通过钢包钙处理,长条状MnS夹杂转变为球状复合夹杂。  相似文献   

15.
为了研究铝脱氧不锈钢开浇过程中二次氧化对钢水洁净度和夹杂物演变的影响,实现钢中夹杂物的有效控制,分别在LF精炼出站、开浇过程中不同时刻取样,采用扫描电镜、ASPEX自动分析仪、热力学计算等不同方法研究了铝脱氧不锈钢中夹杂物的形貌、成分、数量和尺寸分布,确定了铝脱氧不锈钢开浇过程中夹杂物的演变行为和对应机理.研究结果表明,开浇过程钢中氧氮质量分数、夹杂物数密度变化规律类似,20 min时分别增加至7.4×10-5、0.0674%、17.1 mm-2,此后随着浇铸过程进行逐渐降低;LF精炼出站时钙处理改性夹杂物效果较好,其类型主要为Ca O-Al2O3-SiO2-MnO-(MgO),开浇过程中二次氧化降低了钙处理操作的作用效果,20 min时夹杂物类型转变为MnO-Al2O3-SiO2-CaO复合夹杂物,浇铸约60 min时,连铸过程中钢水的洁净度基本达到稳定,此时夹杂物类型重新转变为Ca O-Al2O3-SiO  相似文献   

16.
研究了连铸38CrMoAl钢(/%:0.35 ~ 0.42C、0.20 ~ 0.45Si、0.30 ~0.60Mn、1.35 ~ 1.65Cr、0.15~0.25Mo、0.70 ~ 1.10Al)夹杂物类型和形成原因.通过优化脱氧制度:提高60 t EAF终点[C] ≥0.010%,保持高碱度渣(R≥2.5),出钢前2 ~3 min向熔池喷吹碳粉,控制(FeO),出钢过程减少Si-Fe加入量;LF喂铝线并用铝粒扩散脱氧,采用(/%)50~60CaO、10 ~ 15SiO2、15 ~ 20Al2O3、≤0.7(FeO+ MnO)、≤5MgO高碱度渣;做好VD后保护浇铸,有效地降低钢中Al2O3类型非金属夹杂物.结果表明,优化工艺后38CrMoAl钢连浇炉数达到9炉,夹杂物废品率≤1%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号