首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
SCM435钢的生产流程为80 t BOF-LF-RH-280 mm×325 mm坯连铸。LF终点精炼渣成分为(/%):45~55CaO,10~15SiO2,20~30Al2O3,∑(FeO+MnO)≤1%。分析了RH加钙(0.0013%Ca)和RH不加钙(0.0002%Ca)对Φ13 mm盘条中D和Ds夹杂物的影响。结果表明,RH不加钙处理工艺夹杂物最大尺寸为7.65μm,Ds≤0.5级合格率为100%;RH加钙处理工艺夹杂物最大尺寸为25.68μm,Ds≤0.5级合格率为95%。在数量控制方面,RH不加钙处理工艺夹杂物指数由RH加钙工艺的0.72降至0.68,D类≤1.0合格率由RH加钙工艺的30%提高至75%;RH不加钙处理工艺夹杂物主要为MgO·Al2O3,少量钙铝酸盐夹杂,RH加钙工艺为镁铝尖晶石、钙铝酸盐和CaS多相夹杂。因此,在脆性D类和Ds类夹杂物尺寸、数量和类型控制上,RH不加钙处理工艺改善效果明显  相似文献   

2.
黄治成  杨建  周凯 《特殊钢》2020,41(4):30-33
分析了"BOF-LF-RH-连铸"生产Q345R抗酸钢的工艺和不同的钙处理方式对钢Ca/S、夹杂物的影响,以及低过热度结合动态轻压下浇铸对铸坯低倍质量的影响。研究表明:采用"LF+RH+钙处理"工艺冶炼,可提高钢中Ca/S,降低钢中A类和B类夹杂物尺寸。RH真空后进行钙处理,成品钢板中出现2.0级的Ds类夹杂,延长钙处理后软吹时间,可减少该类夹杂的尺寸和数量。采用LF/RH双步钙处理工艺,RH钙处理后软吹时间16~20 min,可达到钢板B类、Ds和D类夹杂尺寸控制在≤1.0级,A类和C类夹杂尺寸控制在≤0.5级。利用5~12℃过热度结合动态轻压下技术浇铸,铸坯低倍评级中心偏析达到C类1.0级,各元素偏析度较低。采用该工艺,可实现Q345R抗酸钢成分、夹杂物、低倍质量满足标准要求。  相似文献   

3.
黄治成  杨建  周凯 《特殊钢》2020,(4):30-33
分析了"BOF-LF-RH-连铸"生产Q345R抗酸钢的工艺和不同的钙处理方式对钢Ca/S、夹杂物的影响,以及低过热度结合动态轻压下浇铸对铸坯低倍质量的影响。研究表明:采用"LF+RH+钙处理"工艺冶炼,可提高钢中Ca/S,降低钢中A类和B类夹杂物尺寸。RH真空后进行钙处理,成品钢板中出现2.0级的Ds类夹杂,延长钙处理后软吹时间,可减少该类夹杂的尺寸和数量。采用LF/RH双步钙处理工艺,RH钙处理后软吹时间16~20 min,可达到钢板B类、Ds和D类夹杂尺寸控制在≤1.0级,A类和C类夹杂尺寸控制在≤0.5级。利用5~12℃过热度结合动态轻压下技术浇铸,铸坯低倍评级中心偏析达到C类1.0级,各元素偏析度较低。采用该工艺,可实现Q345R抗酸钢成分、夹杂物、低倍质量满足标准要求。  相似文献   

4.
为了减少管线钢中B类夹杂物的生成,开展了钙处理工艺优化研究。研究发现,钢中钙含量较高时,易生成由低熔点钙铝酸盐组成的B类夹杂物。据此提出低钙含量的钙处理优化工艺并开展工业试验。钙处理工艺优化后,夹杂物主要为高Al_2O_3含量的CaO-Al_2O_3,由于存在高熔点相,大部分夹杂物在轧制过程中基本未发生变形,而大尺寸夹杂物则主要发生脆性破碎,这与工艺优化前低熔点夹杂物的塑性变形明显不同。轧板中基本未观察到长宽比大于5的夹杂物,且大尺寸夹杂物的数量显著减少。通过钙处理工艺优化,管线钢中B类夹杂物得到了很好的控制。  相似文献   

5.
对涟钢LG600/LG700XL冶炼过程中夹杂物的衍变机理进行分析,分批次试验研究了精炼渣性能和钙处理工艺对钢液洁净度和钢中夹杂物的影响。结果表明,在钙处理工艺下,夹杂物的衍变路线为Al_2O_3→MgO-Al_2O_3→Al_2O_3-CaO,中间包钢液中的夹杂物主要是Al_2O_3-CaO和Al_2O_3-TiO_x复合氧化物。取消钙处理以后,铸坯中氧的质量分数从16×10~(-6)降低到11×10~(-6)。两种工艺下,材样中绝大部分夹杂物都是核心为铝酸盐、外层为TiN的复合夹杂,钙处理工艺下夹杂物核心是Al_2O_3-CaO-CaS,取消钙处理工艺下夹杂物核心是MgO-Al_2O_3尖晶石。两类复合夹杂物尺寸都比较小(10μm),对钢材性能的影响有限。取消钙处理以后,钢液可浇性基本保持不变,没有发生水口堵塞,说明取消精炼过程中的钙处理工艺对涟钢高强机械用钢而言是可行的。  相似文献   

6.
针对某钢厂欧标Ⅰ类车轴钢Ds类夹杂控制不稳情况,对车轴钢坯和车轴中超标Ds类夹杂物进行扫描能谱分析,并对其形成机理及影响因素进行研究分析,提出了车轴钢Ds类夹杂物控制措施。结果表明:车轴坯和车轴中Ds类夹杂物主要是以钙铝酸盐为主,含少量尖晶石和CaS的复相夹杂,为钢中内生夹杂。通过钙处理的稳定控制,终点氧含量控制在0.02%以下,炉渣碱度控制在3.0~6.0,CaO/Al2O3控制在1.2~2.0,RH精炼过程铝损在20%内,中间包铝损控制在30×10-6内等措施的有效实施,可以有效实现车轴钢超标Ds夹杂物的稳定控制。  相似文献   

7.
以转炉炼钢—LF精炼-RH精炼-控轧控冷工艺生产的轮辋用钢为研究对象,利用扫描电镜对轮辋用钢中非金属夹杂物超标问题进行分析。结果表明,钢中大尺寸B类非金属夹杂物主要成分为12CaO·7Al_2O_3等低熔点钙铝酸盐。在冶炼过程中不同熔点的钙铝酸盐夹杂物在钢液中运动状态不同,固态夹杂物比液态夹杂物更容易被去除。采取的工艺优化措施为降低Ca含量以及调整精炼LF炉脱S模式,优化后提高了钙铝酸盐夹杂物熔点,使其在冶炼过程中更容易被去除,提高了热轧板卷非金属夹杂物检验合格率。  相似文献   

8.
《宽厚板》2017,(5)
为了提高管线钢钢水纯净度,对管线钢钙处理工艺、非金属夹杂物形态进行分析研究,确定了双步钙处理工艺。经过工艺优化钙处理后,钢中非金属夹杂物主要为尺寸5μm的Al_2O_3·MgO·CaS夹杂物,尺寸5μm的非金属夹杂物数量明显减少,管线钢钢水纯净度得到明显提升。  相似文献   

9.
《钢铁》2018,(12)
针对X65管线钢探伤不合缺陷,从夹杂物转变过程分析了缺陷产生的原因,并提出了合理的钙处理工艺,达到控制B类夹杂物、降低探伤不合发生率的目的。研究结果表明,原工艺冶炼过程中夹杂物的转变过程为Al_2O_3→MgO-Al_2O_3→MgO-Al_2O_3-CaO→CaO-Al_2O_3,且最终夹杂物主要为低熔点区的高CaO质量分数钙铝酸盐;通过热力学计算,针对管线钢夹杂物控制提出了新的夹杂物控制目标,并建立了钙处理模型,根据实际的钢液条件计算钙处理控制窗口,用于指导不同w([S])、w(T[O])条件下的合理喂钙量。通过优化处理工艺,钢中钙质量分数由原工艺的0.003 0%~0.004 0%降低至0.001 0%~0.002 0%,铸坯中夹杂物类型为MgO-Al_2O_3-(CaO)-CaS低熔点和高熔点相复合的夹杂物,B类夹杂不大于2.0的一检合格率由96.5%提高至97.5%,夹杂物引起的探伤不合格率由10.0%降至1.5%以下,提高了管线钢的产品质量。  相似文献   

10.
对采用"铁水预处理→BOF→LF精炼→RH精炼→CC→轧板"工艺生产的船板钢进行系统地取样,采用扫描电镜对样品中夹杂物的形貌、尺寸及组成进行分析,结果表明:钙处理前,夹杂物主要为Al_2O_3-CaO及少量的MgO和SiO_2,尺寸在5μm以内;钙处理后,夹杂物主要为Al_2O_3-CaO-CaS,部分尺寸达10μm以上。钢板中主要夹杂物为CaS-CaO-Al_2O_3夹杂以及CaO-Al_2O_3-MgO。对夹杂物在轧制过程的变形情况进行了分析,结果表明,轧制过程发生变形的长条状夹杂物成分为CaO-Al_2O_3,而未变形的夹杂物为CaO-Al_2O_3外包裹着CaS。  相似文献   

11.
 QD08钢因其特殊的工作环境,要求具有较高的抗疲劳特性,而Ds类夹杂物是削弱QD08钢抗疲劳性能的主要原因。为了探究Ds类夹杂物的形成原因及调控方法,解决Ds类夹杂物超标问题,对该钢种炼钢-精炼-连铸全流程进行取样分析。分析结果表明,影响QD08钢疲劳性能的Ds类夹杂物主要成分为CaS-Al2O3-MgO-CaO,其尺寸在15~30 μm范围内波动,主要在LF精炼钙处理操作后开始出现。QD08钢中Ds类夹杂物是以钙镁铝酸盐为核心骨架,外围包裹CaS而形成的。结合夹杂物的成分分布,确定了钢中钙含量高不利于QD08钢中Ds类夹杂物的控制,被改性后的夹杂物熔点低,与钢液润湿性强而难以穿过钢渣界面进入到渣中,且夹杂物在钢液中易聚合长大,造成夹杂物尺寸的增加,为Ds类夹杂物的形成提供了条件。提出在精炼环节采用高氧化钙溶解度精炼渣和微钙处理工艺优化方案,并进行了工业验证试验。通过微钙处理保证了必要的夹杂物改性,可防止水口结瘤,配合减小中间包液面的波动,控制合适的拉坯速度,可避免钢包下渣和卷渣现象的发生。控制更多的夹杂物成分分布在非液相区,抑制了夹杂物的碰撞长大,使得Ds类夹杂物等级降低。试验结果表明,QD08钢中影响其疲劳性能的Ds类夹杂物得到了控制,初检合格率由93.6%提高至98.0%,为企业带来了直接的经济利益。  相似文献   

12.
为了解钙处理对车轮钢洁净度的影响,对BOF-LF精炼-RH精炼-钙处理-CC工艺生产车轮钢系统取样,采用扫描电镜对试样中夹杂物的形貌、尺寸及组成进行了分析。研究表明,钙处理前夹杂物主要为Al_2O_3-CaO及少量的Mg O和Si O2,尺寸在5μm以内,钙处理后夹杂物主要为Al_2O_3-CaO-Ca S,在板卷中呈不连续簇条状,部分尺寸为10μm以上;RH-中间包-热轧过程1~5μm夹杂数量密度呈降低趋势,由10降至3.1个/mm2,5~10μm夹杂数量密度控制在1个/mm2以内,10μm以上夹杂数量密度控制在0.2个/mm2以内;铸坯w(T[O])控制在0.001 0%以内;对夹杂物进行面扫,板卷中主要夹杂物为Ca S-CaO-Al_2O_3夹杂以及CaO-Al_2O_3-Mg O;对夹杂物轧制过程变形分析得出,轧制过程变形的长条状夹杂成分为CaO-Al_2O_3,而未变形的夹杂成分CaO-Al_2O_3外包裹Ca S。  相似文献   

13.
对国内某钢厂BOF-LF-RH工艺生产的轴承钢进行系统取样,发现钢中非金属夹杂尺寸主要集中在3~8μm,并且夹杂物单位面积内数量和平均粒径在RH破空样中达到最小.钢中非金属夹杂成分受渣成分影响显著,铸坯中非金属夹杂以Al_2O_3(CaO复合夹杂为主.非金属夹杂中CaO含量基本完全受渣中CaO含量影响.发现在高碱度渣的条件下,钙铝酸盐与镁铝尖晶石很容易发生反应,同时高碱度条件下MgO-Al_2O_3-CaO系夹杂物中MgO含量也会降低.  相似文献   

14.
为了更好地控制WG350无取向电工钢中的夹杂物,采用扫描电子显微镜、Aspex系统分析了精炼、连铸过程和成品板中夹杂物的类型、数量及尺寸的演变规律。结果表明,氩站开始出现大尺寸含P复合夹杂物,该类型夹杂物大部分在RH脱碳后会上浮去除。RH加铝脱氧时生成的Al_2O_3以团簇状和块状为主,前者尺寸范围为0.5~5μm且大部分被去除,而块状Al_2O_3会一直遗留至成品中。RH合金化后,钢液中夹杂物数量达到最大,夹杂物类型除Al_2O_3外,主要还有复合氧化物、复合氧硫化物。成品板中夹杂物种类及数量关系为:氧硫化物氧化物氮化物氮化物+氧化物氮化物+硫化物氮-氧-硫复合物硫化物。钢中氧硫(质量分数)由49×10~(-6)降低至13×10~(-6)时,夹杂物种类及数量均会大幅度减少。  相似文献   

15.
采用扫描电镜和热力学分析,对IF钢生产过程中Al-Ti-Mg-O类夹杂物的成分、尺寸和形貌的特征及演变行为进行了研究。结果表明,RH脱氧后夹杂物主要为纯Al_2O_3,合金化以后到浇铸成连铸坯的过程中夹杂物中Al_2O_3占比不断减小,含Ti类和含Mg类夹杂物占比不断增加;纯Al_2O_3夹杂尺寸较大,含Ti夹杂物尺寸较小。在热力学平衡条件下,钢中的夹杂物应为Al_2O_3稳定存在,但二次氧化和局部Ti浓度的升高促进了TiO_x的生成。夹杂物中TiO_x含量的增加,将会降低Al-Ti-Mg-O类夹杂物熔点。  相似文献   

16.
通过对椭圆形浸渍管RH冶炼IF钢加Al脱氧后进行连续取样,研究分析了分别采用椭圆形浸渍管和圆形浸渍管条件下洁净度的变化规律。研究结果表明,相比较圆形浸渍管,采用椭圆形浸渍管RH夹杂物的去除效率相对更快。RH加Al后钢中夹杂物主要以Al_2O_3为主,但不同时刻呈现出不同的形貌。当加Al后循环1 min时,钢中夹杂物主要为团簇状Al_2O_3夹杂,夹杂物尺寸达到百微米;加Al后循环2 min时,钢中夹杂物仍以团簇状Al_2O_3为主,尺寸约为几十微米;加Al后循环6 min时,夹杂物主要以单个Al_2O_3夹杂为主,尺寸细小。随着RH加Al后循环时间的增加,夹杂物数量密度显著降低,在纯循环4 min时夹杂物数量密度已达到最低值。  相似文献   

17.
《特殊钢》2017,(3)
试验GCr15轴承钢(/%:1.00C,0.20Si,0.39Mn,0.015P,0.005S,1.50Cr,0.003Ti,0.015Als)的冶炼工艺流程为预脱硫铁水-100 t BOF-LF-RH-200 nm×200 mm坯连铸。主要工艺特点为BOF出钢过程加1.2 kg/t铝脱氧,LF精炼采用白渣操作,精炼初渣主要成分为(/%:22Al_2O_3,56CaO,10SiO_2,5MgO),RH 67 Pa,25 min,连铸过程保护浇注。两炉钢冶炼分析结果表明,钢中氧氮含量在RH破空样品中同时达到最低分别为7×10~(-6)~8×10~(-6)和24×10~(-6)~26×10~(-6),钢中非金属夹杂尺寸主要集中在3~8μm,并且单位面积夹杂物数量在RH破空样中达到最小;铸坯中非金属夹杂以Al_2O_3-CaO夹杂为主;在高碱度渣的条件下,钙铝酸盐与镁铝尖晶石很容易发生反应,碱度为2~3时会出现少量MgO-Al_2O_3,在渣碱度达到4以上时不会出现MgO-Al_2O_3系夹杂物,并且高碱度条件下MgO-Al_2O_3-CaO系夹杂物中MgO含量会降低。  相似文献   

18.
李强  赵家七  蔡小锋  邹长东 《炼钢》2019,35(5):37-42
针对X80M钢成品板材中夹杂物导致探伤合格率低的问题,对其炼钢过程进行排查发现,钙处理使用的硅钙线中有效钙含量偏低。通过更换硅钙线种类以及优化钙处理工艺,钙处理时控制钢水中w(S)25×10~(-6),将喂线速度由1.8 m/s提高至2.5 m/s,底吹流量由180~200 L/min降低为120~150 L/min,钢水中成品Ca质量分数控制在(13~25)×10~(-6),Al_2O_3夹杂均改性为低熔点铝酸钙夹杂,基本处于CaO-Al_2O_3-CaS三元相图中低熔点区,夹杂物尺寸均在50μm以下,X80M钢探伤合格率平均由94.60%提高至99.69%左右,保证了产品质量。  相似文献   

19.
程林  杨文  李树森  任英  张立峰 《炼钢》2019,35(6):60-66
对"BOF→LF→RH→钙处理→CC"工艺生产X70管线钢过程的夹杂物行为演变进行了研究。发现LF精炼过程夹杂物由多面体Al_2O_3转变为球形的MgO-Al_2O_3-CaO-CaS复合夹杂。RH精炼过程夹杂物成分变化不大,但是夹杂物数量和尺寸都减小。钙处理后,夹杂物中的CaO和CaS含量增加,w(CaO)/w(Al_2O_3)增大,平均成分偏离低熔点区。在连铸过程由于二次氧化导致钢中Al_s和T.Ca含量降低,同时中间包夹杂物中CaO和CaS含量有所降低,夹杂物数密度和最大尺寸都有所增加,应加强浇铸过程的保护浇铸,以更好地保证钙处理效果。由于降温过程钢-夹杂物之间平衡的移动,夹杂物由中间包中液态的CaO-Al_2O_3转变为铸坯中的以Al_2O_3-CaS和MgO-Al_2O_3类型为主的高熔点夹杂物。  相似文献   

20.
当前在轴承钢中氧含量已经能够控制在极低水平的情况下,Ds类夹杂物成为影响其质量稳定性的主要因素之一。为解决这一问题,本研究提出了利用非铝脱氧工艺,不使用铝作为脱氧剂,而采用硅锰预脱氧、渣面扩散脱氧、真空终脱氧、精炼过程造低碱度渣的方式生产GCr15轴承钢。与传统铝脱氧生产工艺相对比,非铝脱氧工艺轴承钢中主要夹杂物为硅酸盐,含有少量钙铝硅复合夹杂物,减少了形成Ds类夹杂物的镁铝尖晶石和钙铝酸盐,显著降低了Ds类夹杂物的含量,在轧材中能够将Ds类夹杂物稳定控制在0.5级以下,评级为0级的样品占比高达91.67%。该工艺能够获得稳定的生产效果和产品质量,并为高品质轴承钢生产提供理论及技术指导。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号