首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
采用常规铸造法制备了Mg-45Zn-1.5Nd三元合金,利用SEM、EDS、XRD、硬度及拉伸实验等方法,研究了热处理对Mg-45Zn-1.5Nd合金组织及性能的影响规律。结果表明:铸态组织由Mg7Zn3基体、α-Mg枝晶、α-Mg+MgZn共晶组织以及极少量的球状准晶相组成;退火后α-Mg枝晶和共晶组织溶入基体中,析出了球状准晶相,组织均匀化程度显著提高;热处理使Mg-45Zn-1.5Nd合金的性能大幅度提高,硬度和抗拉强度最高分别达到141.9 HB和168 MPa,比铸态合金提高了14.3%和48.7%,最佳热处理工艺为330℃×6 h;热处理后拉伸断口中尽管出现少量韧窝,但仍是以解理为主的脆性断裂。  相似文献   

2.
通过光学显微镜、扫描电镜分析了铸态及固溶处理态Mg93Zn6Y1合金的显微组织,并利用EDS、XRD进行了物相分析。结果表明,铸态Mg93Zn6Y1合金的显微组织主要由α-Mg相和准晶相(Mg3Zn6Y1)组成。此外,差热分析(DTA)用来分析其相变,得到Mg93Zn6Y1合金合适的固溶温度为430℃。研究发现固溶处理后,Mg93Zn6Y1合金中准晶相发生熔断,由铸态下的连续网状结构变为颗粒状。通过阻尼性能测试以及腐蚀速率测试,发现固溶处理可以较好地改善Mg93Zn6Y1合金的阻尼性能以及耐蚀性能。  相似文献   

3.
热处理对Mg-Zn-Y-Zr合金组织及性能的影响   总被引:1,自引:0,他引:1  
研究了热处理对Mg-0.8Zn-0.15Y-0.6Zr合金微观组织、力学性能及阻尼性能的影响.结果表明:合金铸态及热处理态的微观组织均由α-Mg和(Mg3YZn6)相组成,(Mg,YZn6)相在热处理过程中表现出良好的热稳定性;热处理温度为400℃时,组织中有富Zr的α-Mg新相析出.与铸态相比,合金热处理后的抗拉强度最大提高了15.2%,伸长率最大提高了10.4%.随着热处理温度的升高,合金应变振幅无关阻尼性能逐渐降低.  相似文献   

4.
本文通过两种不同冷却速度制备成分相同、铸造组织特征不同的Mg-4.4Zn-0.3Zr-0.4Y铸态合金,研究不同铸造组织特征对挤压变形态合金组织和力学性能的影响。研究结果表明:与空冷铸造合金相比较,通过水冷冷却增大了熔体冷却速度,使铸态组织得到细化,抑制了W-相(Mg3Y2Zn3相)的形核,并促进了I-相(Mg3YZn6相)的生成,获得了更大体积分数的准晶相(I-相)。经过挤压变形后,水冷铸造合金中的再结晶晶粒细小均匀,经过挤压变形破碎的细小I-相颗粒弥散分布在基体上,{0002}基面织构得到弱化,而{101 ?2}织构强度增强,从而使挤压态Mg-4.4Zn-0.3Zr-0.4Y合金的强度和塑性都得到了大幅的提高。水冷铸造Mg-4.4Zn-0.3Zr-0.4Y合金经过挤压变形后,屈服强度和抗拉强度分别达到297.0MPa和327.3MPa,与空冷铸造挤压态合金相比分别提高了46.4MPa和21.4MPa。水冷铸造Mg-4.4Zn-0.3Zr-0.4Y挤压态合金的延伸率达到14.8%,与空冷铸造挤压态合金相比增大了4.7%。  相似文献   

5.
《铸造技术》2015,(7):1736-1738
采用双电桥法、拉伸性能测试、光学及扫描电镜,研究了热处理工艺对铸态和热压缩态6063铝合金电导率及力学性能的影响。研究表明,经T6处理的铸态及热压缩态合金电导率均随时效时间的延长和温度的升高而提高;热压缩态合金电导率及抗拉强度均高于相同热处理条件的铸态合金;最优热处理工艺分别为:铸态合金525℃×1.0 h固溶处理+200℃×4.0 h时效处理,热压缩态合金525℃×1.0 h固溶处理+190℃×6.0 h时效处理。  相似文献   

6.
通过金相观察、X射线衍射、扫描电镜和拉伸性能测试等方法,研究了不同固溶处理工艺对砂型铸造Mg-4Y-2Nd-1Gd-0.4Zr镁合金微观组织和力学性能的影响。结果表明:合金铸态组织主要由α-Mg基体和共晶Mg24 Y5相组成,共晶相区域存在少量的方块相;固溶处理后,合金中方块相明显增多,且主要分布在晶界处;525℃×8 h为合金的最佳固溶工艺;铸态与固溶态合金的室温拉伸断裂方式有所不同,铸态合金总体呈准解理断裂,而525℃×8 h固溶处理后则为典型的穿晶解理断裂方式。  相似文献   

7.
采用传统铸造方法制备Mg-Zn-Y合金,基于典型的含二十面体准晶相的Mg93Zn6Y1合金,研究了铸态Mg-Zn-Y合金的枝晶形貌与其阻尼性能的关系。通过控制浇注温度、搅拌速度和搅拌时间,获得不同参数下的合金的枝晶形貌。结果表明,铸态Mg93Zn6Y1的显微组织主要由α-Mg树枝状晶体和二十面体准晶相组成。搅拌后,初始α-Mg树枝状晶体逐渐具有分形特征,且其尺寸变化,从而影响合金的阻尼能力。  相似文献   

8.
《铸造》2015,(11)
采用X射线衍射仪、光学显微镜、扫描电镜、透射电镜和拉伸试验研究了浇注温度和T6热处理对挤压铸造Mg-6Zn-0.1Ca-0.5Mn(ZX60)合金组织和力学性能的影响。研究表明,铸态合金的相组成为Mg基体和第二相MgZn_2相。随着浇注温度由720℃降低至680℃,铸态组织枝晶间距减小,连续、粗大的第二相趋向于弥散分布,合金屈服强度提高但抗拉强度和伸长率下降。ZX60镁合金经T6热处理后,主要强化相为沿[0001]_Mg分布的杆状MgZn_2相,其屈服强度、抗拉强度和伸长率相对于铸态分别提高了122%、62%和32%。  相似文献   

9.
采用光学显微镜、扫描电镜、透射电镜、X射线衍射仪、维氏硬度测试仪和万能力学试验机等研究了固溶和时效热处理对铸造Mg-5Y-2Nd-3Sm-0.5Zr合金组织与力学性能的影响。结果表明:铸态合金组织主要由α-Mg基体,Mg24Y5、Mg41Nd5和Mg41Sm5相组成;经固溶处理,铸态合金中粗大的第二相固溶于α-Mg基体中,时效处理后有新的纳米级第二相析出;铸造Mg-5Y-2Nd-3Sm-0.5Zr合金的最佳热处理工艺为525℃下保温10 h,然后225℃下时效处理12 h,热处理后合金具有最优良的力学性能,硬度、抗拉强度、屈服强度和伸长率分别为124.8 HV,296.9 MPa,255.4 MPa和5.78%。  相似文献   

10.
采用传统铸造方法制备Mg-Zn-Y合金,基于典型的含二十面体准晶相的Mg93Zn6Y1合金,研究了铸态Mg-Zn-Y合金的枝晶形貌与其阻尼性能的关系。通过控制浇注温度,搅拌速度和搅拌时间,获得不同参数下的合金的枝晶形貌。结果表明,铸态Mg93Zn6Y1的显微组织主要由α-Mg树枝状晶体和二十面体准晶相组成。搅拌后,初始α-Mg树枝状晶体逐渐具有分形特征,且其尺寸变化,从而影响合金的阻尼能力。本文详细讨论了这一机制。  相似文献   

11.
An icosahedral Mg3 YZn6 quasicrystalline phase can be produced in Mg-Zn- Y system alloys when a proper amount of Zn and Y is contained, and it is feasible to prepare the quasicrystal phase-reinforced low-density magnesium alloy. In this article, phase constituents and the effect of reciprocating extrusion on microstructures and properties of the as-cast Mg-6.4Zn-1.1 Y alloy are analyzed. The microstructure of the as-cast Mg-6.4Zn-1.1 Y alloy consists of the α-Mg solid solution, icosahedral Mg3YZn6 quasicrystal, and Mg3 Y2Zn3 and MgZn2 compounds. After the alloy was reciprocatingly extruded for four passes, grains were refined, Mg3 Y2 Zn3 and MgZn2 phases dissolved into the matrix, whereas, Mg3 YZn6 precipitated and distributed uniformly. The alloy possesses the best performance at this state; the tensile strength, yield strength, and elongation are 323.4 MPa, 258.2 MPa, and 19.7%, respectively. In comparison with that of the as-cast alloy, the tensile strength, yield strength, and elongation of the reciprocatingly extruded alloy increase by 258.3%, 397.5%, and 18 times, respectively. It is concluded that reciprocating extrusion can substantially improve the properties of the as-cast Mg-6.4Zn-1.1 Y alloy, particularly for elongation. The high performance of the Mg-6.4Zn-1.1 Y alloy after reciprocating extrusion can be attributed to dispersion strengthening and grain-refined microstructures.  相似文献   

12.
An icosahedral Mg3 YZn6 quasicrystalline phase can be produced in Mg-Zn-Y system alloys when a proper amount of Zn and Y is contained, and it is feasible to prepare the quasicrystal phase-reinforced low-density magnesium alloy. In this article, phase constituents and the effect of reciprocating extrusion on microstructures and properties of the as-cast Mg-6.4Zn-1.1 Y alloy are analyzed. The microstructure of the as-cast Mg-6.4Zn-1.1 Y alloy consists of the a-Mg solid solution, icosahedral Mg3 YZn6 quasicrystal, and Mg3 Y2Zn3 and MgZn2 compounds. After the alloy was reciprocatingly extruded for four passes, grains were refined, Mg3 Y2 Zn3 and MgZn2 phases dissolved into the matrix, whereas, Mg3YZn6 precipitated and distributed uniformly. The alloy possesses the best performance at this state; the tensile strength, yield strength, and elongation are 323.4 MPa, 258.2 MPa, and 19.7%, respectively. In comparison with that of the as-cast alloy, the tensile strength, yield strength, and elongation of the reciprocatingly extruded alloy increase by 258.3%, 397.5%, and 18 times, respectively. It is concluded that reciprocating extrusion can substantially improve the properties of the as-cast Mg-6.4Zn-1.1 Y alloy, particularly for elongation. The high performance of the Mg-6.4Zn-1.1 Y alloy after reciprocating extrusion can be attributed to dispersion strengthening and grain-refined microstructures.  相似文献   

13.
You  Zhi-yong  Jiang  Ao-xue  Duan  Zhuang-zheng  Qiao  Gang-ping  Gao  Jing-lei  Guo  Ling-bing 《中国铸造》2020,17(3):219-226
Semi-solid AZ91D magnesium alloy billets were prepared by near-liquidus heat holding. Semi-solid squeeze casting was conducted at 575, 585 and 595 ℃, respectively, with 1 mm·s~(-1) squeeze speed. The semisolid squeeze casting AZ91D samples were heat treated by T4(solution at 415 ℃ for 24 h) and T6(solution at 415 ℃ for 24 h + 220 ℃ for 8 h) processes, respectively. The microstructure and mechanical properties of the alloy in different states were investigated by means of OM, SEM and tensile testing machine. The results show that compared to as-cast alloy, the grain size of the semi-solid squeezed AZ91D decreased significantly, and with the increase of semi-solid squeeze temperature, the grain size of AZ91D increased. The grains of the alloy were refined by T4 treatment, and further refined by T6 treatment. T6 treatment greatly improved the tensile strength, elongation, and hardness, but did not significantly improve yield strength. After 575 ℃ squeeze casting and T6 treatment, the ultimate tensile strength(UTS) reached 285 MPa, the elongation reached 13.36%, and the hardness also reached the maximum(106.8 HV), but the yield strength(YS) was only 180 MPa. During the process of semi-solid squeeze casting and heat treatment, the matrix grain was refined and a large number of precipitated and secondary precipitated phases of Mg_(17)Al_(12) appeared. Both the average size of matrix grain and secondary precipitated phase decreased, while the volume fraction of secondary precipitated phase increased. All these resulted in high tensile strength, elongation and hardness.  相似文献   

14.
挤压铸造AZ81镁合金均匀化热处理工艺研究   总被引:1,自引:0,他引:1  
为改善挤压铸造AZ81镁合金组织的不均匀性,对铸态试样进行均匀化热处理。采用金相显微镜、X射线衍射仪和扫描电镜对AZ81镁合金的组织与性能进行分析。结果表明:经400℃、8h均匀化处理后,AZ81合金有效地消除了枝晶偏析,改善了材料的组织状态;合金硬度由HRE73.72下降到HRE57.68,屈服强度由130MPa增加到138MPa,抗拉强度由226MPa增加到258MPa,伸长率则由7.6%增加到13.6%;试样的室温拉伸断口均为准解理断裂,经均匀化处理后断裂方式由沿晶界的脆性断裂转变为韧性穿晶断裂。  相似文献   

15.
The microstructure and mechanical properties of as-cast and as-extruded Mg-Zn-Y alloy (Mg-11 %Zn- 0.9%Y, mass fraction) containing Mg3 YZn6 quasicrystal were studied. The eutectic icosahedral quasicrystal phase (I-phase) is broken and almost distributes along the extrusion direction, and fine I-phase with nano-size is precipitated during the extrusion. The a-Mg matrix grains are refined due to recrystallization occuring during the hot extrusion. Some {1012} twins are observed in the extruded ZW1101 alloy. And {0002}(1010) fiber texture is formed in matrix alloys after hot extrusion. The extruded alloy exhibits high strength in combination with large elongation at room temperature. The strengthening mechanism of the as-extruded alloy was discussed.  相似文献   

16.
研究T4和T6热处理状态下高真空压铸Mg-8Gd-3Y-0.4Zr(质量分数,%)合金的微观组织、化合物含量、力学性能及断裂行为。铸态Mg-8Gd-3Y-0.4Zr合金微观组织主要由α-Mg和共晶Mg24(Gd,Y)5化合物组成。经固溶处理后,共晶化合物大量溶解于镁基体,合金主要含过饱和α-Mg及方块相。固溶合金中方块相的含量随固溶温度的升高而增大,力学性能也有所提高。根据微观组织结果,确定475℃,2 h为Mg-8Gd-3Y-0.4Zr合金最优固溶方案。合金的最佳屈服强度为222.1 MPa,延伸率可达15.4%。铸态,T4状态下和T6状态下合金的拉伸断裂模式为穿晶准解理断裂。  相似文献   

17.
利用光学显微镜(OM)、扫描电镜(SEM)、透射电镜(TEM)、X射线衍射仪(XRD)和力学试验机等研究了铸造Mg-6Zn-2.5Cu合金在铸态、固溶和时效处理下的显微组织和力学性能。结果表明:合金的铸态组织主要由α-Mg和(α-Mg+MgZn2+Mg2Cu+CuZnMg)共晶相组成。在455℃固溶12~36 h时,随着时间增加,固溶效果逐渐增强,且在20 h时合金获得了较理想的显微组织及218 MPa的抗拉强度和8.68%的伸长率。随后在180℃时效6~72 h后,合金的拉伸性能随时效时间的增加呈先增加后减小的趋势,其中时效24 h时后,合金的抗拉强度和硬度达到峰值,分别为249.5 MPa和64.6 HV0.1,比铸态的分别提高了66.5 MPa和26.29%,伸长率在时效12 h时后达到了峰值6.72%。铸态合金的断裂方式以沿晶断裂为主,时效处理后合金的断裂方式为准解理断裂。  相似文献   

18.
采用低压铸造制备了WE43镁合金,使用OM、SEM、EDS研究了热处理前后合金的显微组织及元素分布情况,并对其力学性能进行测试,分析热处理对其力学性能的影响。结果表明,WE43镁合金铸态组织主要由α-Mg基体和晶界上的Mg24Y5共晶相组成。经过520℃×10h+225℃×14h热处理后,WE43镁合金主要由α-Mg基体、方块相团簇、少量残余Mg24Y5共晶相及针状的时效析出相组成。与铸态合金相比,热处理后WE43镁合金的抗拉强度和屈服强度显著提高,分别达到305.9 MPa和191.8 MPa,但伸长率下降至3.1%。  相似文献   

19.
采用挤压铸造成形工艺制备7055高强铝合金,研究了热挤压参数对合金力学性能及微观组织的影响,并与铸态下的力学性能及微观组织进行了对比.结果表明,热挤压态下的7055铝合金的微观组织和力学性能均优于铸态,并且晶粒随着比压的增加趋于细化,抗拉强度随着比压的增加趋于提高.当比压为75 MPa时,在730 ℃温度下进行挤压浇注,经过双级固溶处理和时效后,合金的晶粒明显细化,抗拉强度达到681.4 MPa,伸长率达到7.14%.  相似文献   

20.
不同压力对挤压铸造Al-Cu-Mg合金性能的影响   总被引:2,自引:0,他引:2  
使用挤压铸造工艺制备了高强、高韧Al-4.5Cu-1Mg合金。在挤压力为70MPa下成型后,合金的最大抗拉强度达到288.8MPa、伸长率达到12.8%、HRB硬度达到48.3。通过对该合金力学性能及其显微组织的研究表明,合金的抗拉强度、伸长率以及硬度随着压力的增加而增大,并且在70MPa时达到最大值,70MPa之后继续增加压力,对材料性能影响不大。研究了挤压力对合金的密度和导电性的影响。试验结果表明,合金的密度随着压力的增加而快速增大,在挤压压力为70MPa时达到最大值,然后变化不大。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号