首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
It is well known that a delay‐dependent or delay‐independent truncated predictor feedback law stabilizes a general linear system in the presence of a certain amount of input delay. Results also exist on estimating the maximum delay bound that guarantees stability. In the face of a time‐varying or unknown delay, delay‐independent feedback laws are preferable over delay‐dependent feedback laws as the former provide robustness to the uncertainties in the delay. In the light of few results on the construction of delay‐independent output feedback laws for general linear systems with input delay, we present in this paper a delay‐independent observer–based output feedback law that stabilizes the system. Our design is based on the truncated predictor feedback design. We establish an estimate of the maximum allowable delay bound through the Razumikhin‐type stability analysis. An implication of the delay bound result reveals the capability of the proposed output feedback law in handling an arbitrarily large input delay in linear systems with all open‐loop poles at the origin or in the open left‐half plane. Compared with that of the delay‐dependent output feedback laws in the literature, this same level of stabilization result is not sacrificed by the absence of the prior knowledge of the delay.  相似文献   

2.
This paper describes a delay‐range‐dependent local state feedback controller synthesis approach providing estimation of the region of stability for nonlinear time‐delay systems under input saturation. By employing a Lyapunov–Krasovskii functional, properties of nonlinear functions, local sector condition and Jensen's inequality, a sufficient condition is derived for stabilization of nonlinear systems with interval delays varying within a range. Novel solutions to the delay‐range‐dependent and delay‐dependent stabilization problems for linear and nonlinear time‐delay systems, respectively, subject to input saturation are derived as specific scenarios of the proposed control strategy. Also, a delay‐rate‐independent condition for control of nonlinear systems in the presence of input saturation with unknown delay‐derivative bound information is established. And further, a robust state feedback controller synthesis scheme ensuring L2 gain reduction from disturbance to output is devised to address the problem of the stabilization of input‐constrained nonlinear time‐delay systems with varying interval lags. The proposed design conditions can be solved using linear matrix inequality tools in connection with conventional cone complementary linearization algorithms. Simulation results for an unstable nonlinear time‐delay network and a large‐scale chemical reactor under input saturation and varying interval time‐delays are analyzed to demonstrate the effectiveness of the proposed methodology. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

3.
In this paper, an improved linear matrix inequality (LMI)‐based robust delay‐dependent stability test is introduced to ensure a larger upper bound for time‐varying delays affecting the state vector of an uncertain continuous‐time system with norm‐bounded‐type uncertainties. A quasi‐full‐size Lyapunov–Krasovskii functional is chosen and free‐weighting matrix approach is employed. Less restrictive sufficient conditions are derived for robust stability of time‐varying delay systems with norm‐bounded‐type uncertainties. Moreover, the investigation of the stabilization problem with memoryless state‐feedback control is presented such that the stabilizability criteria are obtained in terms of matrix inequalities, which can be solved via utilizing a cone complementarity minimization algorithm. Finally, the problem of output feedback stabilization for square systems is also taken into consideration. The output feedback stabilizability criteria are derived in the form of linear matrix inequalities, which are convex and can be easily solved using interior point algorithms. A plenty of numerical examples are presented indicating that the proposed stability and stabilization methods effectively improve the existing results. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

4.
This paper considers the problem of output‐feedback‐guaranteed cost controller design for uncertain time‐delay systems. The uncertainty in the system is assumed to be norm‐bounded and time‐varying. The time‐delay is allowed to enter the state and the measurement equations. A linear quadratic cost function is considered as a performance measure for the closed‐loop system. Necessary and sufficient conditions are provided for the construction of a guaranteed cost controller. These conditions are given in terms of the feasibility of LMIs which depend on a positive definite matrix and a scaling variable. A numerical algorithm is developed to search for a full order dynamic output‐feedback controller which minimizes the cost bound. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

5.
This paper aims to derive stability conditions and an output‐feedback stabilization method for discrete‐time systems with a time‐varying state delay and nonlinear perturbation. With a new way of handling the Lyapunov stability criterion, linear matrix inequality conditions are obtained for estimating bounds on delay to ensure the asymptotic stability. Based on the conditions, a synthesis procedure is developed for finding stabilizing output‐feedback gains, which are formulated as direct design variables. Three numerical examples are employed to demonstrate the effectiveness and advantages of the proposed method. Copyright © 2010 John Wiley and Sons Asia Pte Ltd and Chinese Automatic Control Society  相似文献   

6.
This paper addresses the problem of output feedback sampled‐data stabilization for upper‐triangular nonlinear systems with improved maximum allowable transmission delay. A class of hybrid systems are firstly introduced. The transmission delay may be larger than the sampling period. Then, sufficient conditions are proposed to guarantee global exponential stability of the hybrid systems. Based on these sufficient conditions and a linear continuous‐discrete observer, an output feedback control law is presented to globally exponentially stabilize the feedforward nonlinear system. The improved maximum allowable transmission delay is also given. The results are also extended to output feedback sampled‐data stabilization for lower‐triangular nonlinear systems. Finally, illustrative examples are used to verify the effectiveness of the proposed design methods. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

7.
In this paper, the problems of stochastic stability and stabilization for a class of uncertain time‐delay systems with Markovian jump parameters are investigated. The jumping parameters are modelled as a continuous‐time, discrete‐state Markov process. The parametric uncertainties are assumed to be real, time‐varying and norm‐bounded that appear in the state, input and delayed‐state matrices. The time‐delay factor is constant and unknown with a known bound. Complete results for both delay‐independent and delay‐dependent stochastic stability criteria for the nominal and uncertain time‐delay jumping systems are developed. The control objective is to design a state feedback controller such that stochastic stability and a prescribed ?‐performance are guaranteed. We establish that the control problem for the time‐delay Markovian jump systems with and without uncertain parameters can be essentially solved in terms of the solutions of a finite set of coupled algebraic Riccati inequalities or linear matrix inequalities. Extension of the developed results to the case of uncertain jumping rates is also provided. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

8.
This article addresses the problem of global output feedback stabilization for a class of time‐varying delay nonlinear systems with polynomial growth rate. The systems under investigation possess two remarkable features: the output is perturbed by an unknown sensitivity function that is not differentiable but continuous, and the nonlinearities are bounded by a polynomial function of the output multiplied by unmeasurable state variables. The new full‐order observer is established by introducing a dynamic gain and filtering unknown nonlinearities and time‐varying delay. With the help of the transformation skill and the reasonable combination of several systems, this article proposes a linear output feedback controller with the dynamic gain and completes the performance analysis based on the construction of two integral Lyapunov functions. Finally, a simulation example is presented to demonstrate the effectiveness of control strategy.  相似文献   

9.
In this article, we address the problem of output stabilization for a class of nonlinear time‐delay systems. First, an observer is designed for estimating the state of nonlinear time‐delay systems by means of quasi‐one‐sided Lipschitz condition, which is less conservative than the one‐sided Lipschitz condition. Then, a state feedback controller is designed to stabilize the nonlinear systems in terms of weak quasi‐one‐sided Lipschitz condition. Furthermore, it is shown that the separation principle holds for stabilization of the systems based on the observer‐based controller. Under the quasi‐one‐sided Lipschitz condition, state observer and feedback controller can be designed separately even though the parameter (A,C) of nonlinear time‐delay systems is not detectable and parameter (A,B) is not stabilizable. Finally, a numerical example is provided to verify the efficiency of the main results.  相似文献   

10.
In this paper, we study the cooperative robust output regulation problem for linear uncertain multiagent systems with both communication delay and input delay by the distributed internal model approach. The problem includes the leader‐following consensus problem of linear multiagent systems with time delay as a special case. We first generalize the internal model design method to systems with both communication delay and input delay. Then, under a set of standard assumptions, we have obtained the solution to the problem via both the state feedback control law and the output feedback control law. In contrast to the existing results, our results apply to general linear uncertain multiagent systems, accommodate a large class of leader signals, and achieve asymptotic tracking and disturbance rejection at the same time.  相似文献   

11.
This paper considers the problems of robust non‐fragile stochastic stabilization and H control for uncertain time‐delay stochastic systems with time‐varying norm‐bounded parameter uncertainties in both the state and input matrices. Attention is focused on the design of memoryless state feedback controllers which are subject to norm‐bounded uncertainties. For both the cases of additive and multiplicative controller uncertainties, delay‐independent sufficient conditions for the solvability of the above problems are obtained. The desired state feedback controller can be constructed by solving a certain linear matrix inequality.  相似文献   

12.
The Razumikhin‐type approach is introduced to solve the state feedback stabilization problem for a class of stochastic high‐order nonlinear systems with time‐varying delay. Based on the general Razumikhin‐type theorem on stochastic systems established in our paper and backstepping design method, a state feedback controller is constructed to ensure the origin of closed‐loop system is globally asymptotically stable in probability. Our methodology enables us to completely remove the limitations on the derivative of delay, which is the common assumption of stochastic high‐order nonlinear systems with time‐varying delay. The efficiency of the state feedback controller is demonstrated by simulation examples. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

13.
This paper studies the problems of stabilization of discrete‐time linear systems with a single input delay. By developing the methodology of pseudo‐predictor feedback, which uses the (artificial) closed‐loop system dynamics to predict the future state, memoryless state feedback control laws are constructed to solve the problem. Necessary and sufficient conditions are obtained to guarantee the stability of the closed‐loop system in terms of the stability of a class‐difference equations. It is also shown that the proposed controller achieves semi‐global stabilization of the system if its actuator is subject to either magnitude saturation or energy constraints under the condition that the open‐loop system is only polynomially unstable. Numerical examples have been worked out to illustrate the effectiveness of the proposed approaches. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

14.
This article investigates the finite‐time output feedback stabilization problem for a class of nonlinear time‐varying delay systems in the p‐normal form. First, a reduced‐order state observer is designed to estimate the unmeasurable state. Then, an output feedback controller is constructed, with the help of the finite‐time Lyapunov stability theorem, it is proved that the state of the resulting closed‐loop system converges to the origin in finite time. Two simulation examples are given to verify the effectiveness of the proposed scheme.  相似文献   

15.
This paper is concerned with robust quantized output feedback control problems for uncertain discrete‐time systems with time‐varying delay and saturation nonlinearity. It is assumed that the quantizer is of the saturating type. A new framework for the local boundedness stabilization of quantized feedback systems is developed. Attention is focused on finding a quantized static output feedback controller such that all trajectories of the resulting closed‐loop system starting from an admissible initial basin converge to a bounded region strictly within the initial basin. A quantized feedback controller is proposed, which comprises output feedback and the exogenous signal parts. Simulation examples are given to illustrate the effectiveness and advantage of the proposed methods. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

16.
由Lyapunov和一种Razumikhin型的方法, 讨论了带有时滞状态的不确定Lur’e_Postnikov系统的鲁棒镇定. 证明对带有状态时滞和范数有界扰动的不确定Lur’e_Postnikov系统, 若其系统矩阵满足某个代数Riccati不等式, 则可通过某 (静态 )线性状态反馈或 (动态 )状态反馈使其闭环系统是二次稳定的. 同样, 应用一Razumikhin型方法, 对带有时变时滞的一类不确定非线性系统的能稳定性问题, 也给出一个充分条件.  相似文献   

17.
The problem of global robust stabilization is studied by both continuous‐time and sampled‐data output feedback for a family of nonminimum‐phase nonlinear systems with uncertainty. The uncertain nonlinear system considered in this paper has an interconnect structure consisting of a driving system and a possibly unstable zero dynamics with uncertainty, ie, the uncertain driven system. Under a linear growth condition on the uncertain zero dynamics and a Lipschitz condition on the driving system, we show that it is possible to globally robustly stabilize the family of uncertain nonminimum‐phase systems by a single continuous‐time or a sampled‐data output feedback controller. The sampled‐data output feedback controller is designed by using the emulated versions of a continuous‐time observer and a state feedback controller, ie, by holding the input/output signals constant over each sampling interval. The design of either continuous‐time or sampled‐data output compensator uses only the information of the nominal system of the uncertain controlled plant. In the case of sampled‐data control, global robust stability of the hybrid closed‐loop system with uncertainty is established by means of a feedback domination method together with the robustness of the nominal closed‐loop system if the sampling time is small enough.  相似文献   

18.
The stochastic stability and stochastic stabilization of time‐varying delay discrete‐time singular Markov jump systems are discussed. For full and partial knowledge of transition probabilities cases, delay‐dependent linear matrix inequalities (LMIs) conditions for the systems to be regular, causal and stochastically stable are given. Sufficient conditions are proposed for the existence of state feedback controller in terms of LMIs. Finally, two numerical examples to illustrate the effectiveness of the method are given. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

19.
In this article, the problem of robust output feedback stabilization of single‐input single‐output nonlinear systems is studied in the event‐triggering framework. In this work, an event‐triggered output feedback law based on a high‐gain observer is constructed, which guarantees the stability of closed‐loop system. First, the high‐gain observer with a triggering scheme is designed to estimate the plant state in the presence of external disturbances subject to any satisfactory accuracy of the estimation error. The observer‐based triggering mechanism decides the transmission of plant output to the observer by observing a certain event condition. Similarly, another triggering mechanism is designed using the estimated state of observer that triggers the control signal to be updated only when it is satisfied. Under this proposed event‐triggering framework, the stability of closed‐loop system is then analyzed. Here, we provide the simplified design technique, in which the high‐gain parameter and the triggering thresholds can be selected independently to achieve any desired bound for the plant trajectory. The results are finally demonstrated through simulation of a numerical example.  相似文献   

20.
This paper investigates time‐invariant linear systems subject to input and state constraints. We study discrete‐time systems with full or partial constraints on both input and state. It has been shown earlier that the solvability conditions of stabilization problems are closely related to important concepts such as the right invertibility or non‐right invertibility of the constraints, the location of constraint invariant zeros, and the order of constraint infinite zeros. In this paper, for general time‐invariant linear systems with non‐right invertible constraints, necessary and sufficient conditions are developed under which semi‐global stabilization in the admissible set can be achieved by state feedback. Sufficient conditions are also developed for such a stabilization in the case where measurement feedback is used. Such sufficient conditions are almost necessary. Controllers for both state feedback and measurement feedback are constructed as well. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号