首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
    
The development of smart nanosystems, which could overcome diverse biological barriers of nanomedicine transport, has received intense scientific interest in improving the therapeutic efficacies of traditional nanomedicines. However, the reported nanosystems generally hold disparate structures and functions, and the knowledge of involved biological barriers is usually scattered. There is an imperative need for a summary of biological barriers and how these smart nanosystems conquer biological barriers, to guide the rational design of the new-generation nanomedicines. This review starts from the discussion of major biological barriers existing in nanomedicine transport, including blood circulation, tumoral accumulation and penetration, cellular uptake, drug release, and response. Design principles and recent progress of smart nanosystems in overcoming the biological barriers are overviewed. The designated physicochemical properties of nanosystems can dictate their functions in biological environments, such as protein absorption inhibition, tumor accumulation, penetration, cellular internalization, endosomal escape, and controlled release, as well as modulation of tumor cells and their resident tumor microenvironment. The challenges facing smart nanosystems on the road heading to clinical approval are discussed, followed by the proposals that could further advance the nanomedicine field. It is expected that this review will provide guidelines for the rational design of the new-generation nanomedicines for clinical use.  相似文献   

2.
3.
    
Targeted protein degradation (TPD) is an emerging therapeutic strategy with the potential of targeting undruggable pathogenic proteins. After the first proof-of-concept proteolysis-targeting chimeric (PROTAC) molecule was reported, the TPD field has entered a new era. In addition to PROTAC, numerous novel TPD strategies have emerged to expand the degradation landscape. However, their physicochemical properties and uncontrolled off-target side effects have limited their therapeutic efficacy, raising concerns regarding TPD delivery system. The combination of TPD and nanotechnology offers great promise in improving safety and therapeutic efficacy. This review provides an overview of novel TPD technologies, discusses their clinical applications, and highlights the trends and perspectives in TPD nanomedicine.  相似文献   

4.
5.
6.
    
Taking advantage of the highly permeable vasculature and lack of lymphatic drainage in solid tumors (EPR effect), nanosized drug delivery systems or nanomedicines have been extensively explored for tumor‐targeted drug delivery. However, in most clinical cases tumors such as the early stage tumors and post‐surgery microscopic residual tumors have not yet developed such pathological EPR features, i.e., EPR‐deficient. Therefore, nanomedicines may not be applicable for such these tumors. Macrophages by nature can actively home and extravasate through the tight vascular wall into tumors and migrate to their hypoxic regions, and possess perfect stealth ability for long blood circulation and impressive phagocytosis for drug loadings. Thus, nanomedicines loaded in macrophages would harness both merits and gain the active tumor homing capability independent of the EPR effect for treatments of the EPR‐deficient tumors. Herein, the critical considerations, current progress, challenges and future prospects of macrophages as carriers for nanomedicines are summarized, aiming at rational design of EPR‐independent tumor‐targeting active nanomedicines for targeted early and adjuvant cancer chemotherapy.  相似文献   

7.
    
Regulating the tumor microenvironment (TME) has been a promising strategy to improve antitumor therapy. Here, a red blood cell membrane (mRBC)‐camouflaged hollow MnO2 (HMnO2) catalytic nanosystem embedded with lactate oxidase (LOX) and a glycolysis inhibitor (denoted as PMLR) is constructed for intra/extracellular lactic acid exhaustion as well as synergistic metabolic therapy and immunotherapy of tumor. Benefiting from the long‐circulation property of the mRBC, the nanosystem can gradually accumulate in a tumor site through the enhanced permeability and retention (EPR) effect. The extracellular nanosystem consumes lactic acid in the TME by catalyzing its oxidation reaction via LOX. Meanwhile, the intracellular nanosystem releases the glycolysis inhibitor to cut off the source of lactic acid, as well as achieve antitumor metabolic therapy through the blockade of the adenosine triphosphate (ATP) supply. Both the extracellular and intracellular processes can be sensitized by O2, which can be produced during the decomposition of endogenous H2O2 catalyzed by the PMLR nanosystem. The results show that the PMLR nanosystem can ceaselessly remove lactic acid, and then lead to an immunocompetent TME. Moreover, this TME regulation strategy can effectively improve the antitumor effect of anti‐PDL1 therapy without the employment of any immune agonists to avoid the autoimmunity.  相似文献   

8.
    
Protein‐based nanomedicine platforms for drug delivery comprise naturally self‐assembled protein subunits of the same protein or a combination of proteins making up a complete system. They are ideal for drug‐delivery platforms due to their biocompatibility and biodegradability coupled with low toxicity. A variety of proteins have been used and characterized for drug‐delivery systems, including the ferritin/apoferritin protein cage, plant‐derived viral capsids, the small Heat shock protein (sHsp) cage, albumin, soy and whey protein, collagen, and gelatin. There are many different types and shapes that have been prepared to deliver drug molecules using protein‐based platforms, including various protein cages, microspheres, nanoparticles, hydrogels, films, minirods, and minipellets. The protein cage is the most newly developed biomaterial for drug delivery and therapeutic applications. The uniform size, multifunctionality, and biodegradability push it to the frontier of drug delivery. In this Review, the recent strategic development of drug delivery is discussed with emphasis on polymer‐based, especially protein‐based, nanomedicine platforms for drug delivery. The advantages and disadvantages are also discussed for each type of protein‐based drug‐delivery system.

  相似文献   


9.
    
The conjugate of paclitaxel (PTX) and docosahexaenoic acid has entered into clinical trials. However, the most recent clinical outcomes fell short of expectations, due to the extremely slow drug release from the hydrophobic conjugates. Herein, a novel prodrug‐based nanoplatform self‐assembled by the disulfide bond linked conjugates of PTX and oleic acid for rapid and differential release of PTX in tumor cells is reported. This redox‐responsive prodrug‐nanosystem demonstrates multiple therapeutic advantages, including one‐step facile fabrication, high drug‐loading efficiency (56%, w/w), on‐demand drug release responding to redox stimuli, as well as favorable cellular uptake and biodistribution. These advantages result in significantly enhanced antitumor efficacy in vivo, with the tumor almost completely disappearing in mice. Such a uniquely engineered prodrug‐nanosystem has great potential to be used as potent chemotherapeutic nanomedicine in clinical cancer therapy.  相似文献   

10.
    
The molecular structuring of complex architectures and the enclosure of space are essential requirements for technical and living systems. Self‐assembly of supramolecular structures with desired shape, size, and stability remains challenging since it requires precise regulation of physicochemical and conformational properties of the components. Here a general platform for controlled self‐assembly of tailored amphiphilic elastin‐like proteins into desired supramolecular protein assemblies ranging from spherical coacervates over molecularly defined twisted fibers to stable unilamellar vesicles is introduced. The described assembly protocols efficiently yield protein membrane–based compartments (PMBC) with adjustable size, stability, and net surface charge. PMBCs demonstrate membrane fusion and phase separation behavior and are able to encapsulate structurally and chemically diverse cargo molecules ranging from small molecules to naturally folded proteins. The ability to engineer tailored supramolecular architectures with defined fusion behavior, tunable properties, and encapsulated cargo paves the road for novel drug delivery systems, the design of artificial cells, and confined catalytic nanofactories.  相似文献   

11.
    
Inhomogeneous heating by photothermal therapy (PTT) during cancer treatment often results in the recurrence of tumors. Thus, integrating PTT with chemotherapy (CHT) may provide a complementary treatment for enhanced therapeutic efficiency. Herein, this study develops a hollow structured polymer–silica nanohybrid (HPSN) as a nanocarrier to simultaneously deliver the anticancer drug paclitaxel and photothermal agent palladium phthalocyanine to tumors through enhanced permeation and the retention effect. A combinational CHT/PTT therapy on mice bearing aggressive tumor grafts is conducted. The highly malignant tumor model, which recurs after sole treatment of PTT, can be eradicated by the combined CHT/PTT treatment. In addition, most of the off‐targeted HPSN nanocarriers can be excreted through a hepatobiliary pathway in about 10 d. Serology results show that the fast‐clearable HPSN can significantly reduce the side effect of the loaded paclitaxel drug. The present work provides an alternative approach for combinational cancer treatment with high therapeutic efficiency.  相似文献   

12.
    
Cancer cells resist to the host immune antitumor response via multiple suppressive mechanisms, including the overexpression of PD‐L1 that exhausts antigen‐specific CD8+ T cells through PD‐1 receptors. Checkpoint blockade antibodies against PD‐1 or PD‐L1 have shown unprecedented clinical responses. However, limited host response rate underlines the need to develop alternative engineering approaches. Here, engineered cellular nanovesicles (NVs) presenting PD‐1 receptors on their membranes, which enhance antitumor responses by disrupting the PD‐1/PD‐L1 immune inhibitory axis, are reported. PD‐1 NVs exhibit a long circulation and can bind to the PD‐L1 on melanoma cancer cells. Furthermore, 1‐methyl‐tryptophan, an inhibitor of indoleamine 2,3‐dioxygenase can be loaded into the PD‐1 NVs to synergistically disrupt another immune tolerance pathway in the tumor microenvironment. Additionally, PD‐1 NVs remarkably increase the density of CD8+ tumor infiltrating lymphocytes in the tumor margin, which directly drive tumor regression.  相似文献   

13.
14.
15.
16.
    
Platinum (Pt) drugs are widely used in clinic for cancer therapy, but their therapeutic outcomes are significantly compromised by severe side effects and acquired drug resistance. With the emerging immunotherapy and imaging-guided cancer therapy, precise delivery and release of Pt drugs have drawn great attention these days. The targeting delivery of Pt drugs can greatly increase the accumulation at tumor sites, which ultimately enhances antitumor efficacy. Further, with the combination of Pt drugs and other theranostic agents into one nanosystem, it not only possesses excellent synergistic efficacy but also achieves real-time monitoring. In this review, after the introduction of Pt drugs and their characteristics, the recent progress of polymeric nanosystems for efficient delivery of Pt drugs is summarized with an emphasis on multi-modal synergistic therapy and imaging-guided Pt-based cancer treatment. In the end, the conclusions and future perspectives of Pt-encapsulated nanosystems are given.  相似文献   

17.
18.
    
Antimonene (AM) is a recently described two‐dimensional (2D) elemental layered material. In this study, a novel photonic drug‐delivery platform based on 2D PEGylated AM nanosheets (NSs) is developed. The platform's multiple advantages include: i) excellent photothermal properties, ii) high drug‐loading capacity, iii) spatiotemporally controlled drug release triggered by near‐infrared (NIR) light and moderate acidic pH, iv) superior accumulation at tumor sites, v) deep tumor penetration by both extrinsic stimuli (i.e., NIR light) and intrinsic stimuli (i.e., pH), vi) excellent multimodal‐imaging properties, and vii) significant inhibition of tumor growth with no observable side effects and potential degradability, thus addressing several key limitations of cancer nanomedicines. The intracellular fate of the prepared NSs is also revealed for the first time, providing deep insights that improve cellular‐level understanding of the nano–bio interactions of AM‐based NSs and other emerging 2D nanomaterials. To the best of knowledge, this is the first report on 2D AM‐based photonic drug‐delivery platforms, possibly marking an exciting jumping‐off point for research into the application of 2D AM nanomaterials in cancer theranostics.  相似文献   

19.
    
Targeted drug delivery is one of the key challenges in cancer nanomedicine. Stoichiometric and spatial control over the antibodies placement on the nanomedicine vehicle holds a pivotal role to overcome this key challenge. Here, a DNA tetrahedral is designed with available conjugation sites on its vertices, allowing to bind one, two, or three cetuximab antibodies per DNA nanostructure. This stoichiometrically definable cetuximab conjugated DNA nanostructure shows enhanced targeting on the breast cancer cells, which results with higher overall killing efficacy of the cancer cells.  相似文献   

20.
    
Advanced chemotherapeutic strategies including prodrug and nanocatalytic medicine have significantly advanced tumor-selective theranostics, but delicate prodrug screening, tedious synthesis, low degradability/biocompatibility of inorganic components, and unsatisfied reaction activity complicate treatment efficacies. Here, the intrinsic anticancer bioactivity of liquid metal nanodroplets (LMNDs) is explored through galvanic replacement. By utilizing a mechano-degradable ligand, the resultant size of the aqueous LMND is unexpectedly controlled as small as ≈20 nm (LMND20). It is demonstrated that LMND20 presents excellent tumor penetration and biocompatibility and activates tumor-selective carrier-to-drug conversion, synchronously depleting Cu2+ ions and producing Ga3+ ions through galvanic replacement. Together with abundant generation of reactive oxygen species, multiple anticancer pathways lead to selective apoptosis and anti-angiogenesis of breast cancer cells. Compared to the preclinical/clinical anticancer drugs of tetrathiomolybdate and Ga(NO3)3, LMND20 administration significantly improves the therapeutic efficacy and survival in a BCap-37 xenograft mouse model, yet without obvious side effects.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号