首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The maximum responsivity of a pure monolayer graphene‐based photodetector is currently less than 10 mA W?1 because of small optical absorption and short recombination lifetime. Here, a graphene hybrid photodetector functionalized with a photoactive ruthenium complex that shows an ultrahigh responsivity of ≈1 × 105 A W?1 and a photoconductive gain of ≈3 × 106 under incident optical intensity of the order of sub‐milliwatts is reported. This responsivity is two orders of magnitude higher than the precedent best performance of graphene‐based photodetectors under a similar incident light intensity. Upon functionalization with a 4‐nm‐thick ruthenium complex, monolayer graphene‐based photodetectors exhibit pronounced n‐type doping effect due to electron transfer via the metal?ligand charge transfer (MLCT) from the ruthenium complex to graphene. The ultrahigh responsivity is attributed to the long lifetime and high mobility of the photoexcited charge carriers. This approach is highly promising for improving the responsivity of graphene‐based photodetectors.  相似文献   

2.
Topological crystalline insulators (TCIs) are predicted to be a promising candidate material for ultra‐broadband photodetectors ranging from ultraviolet (UV) to terahertz (THz) due to its gapless surface state and narrow bulk bandgap. However, the low responsivity of TCIs‐based photodetectors limits their further applications. In this regard, a high‐performance photodetector based on SnTe, a recently developed TCI, working in a broadband wavelength range from deep UV to mid‐IR with high responsivity is reported. By taking advantage of the strong light absorption and small bandgap of SnTe, photodetectors based on the as‐grown SnTe crystalline nanoflakes as well as specific short channel length achieve a high responsivity (71.11 A W?1 at 254 nm, 49.03 A W?1 at 635 nm, 10.91 A W?1 at 1550 nm, and 4.17 A W?1 at 4650 nm) and an ultra‐broad spectral response (254–4650 nm) simultaneously. Moreover, for the first time, a durable flexible SnTe photodetector fabricated directly on a polyethylene terephthalate film is demonstrated. These results prove the great potential of TCIs as a promising material for integrated and flexible optoelectronic devices.  相似文献   

3.
Layered van der Waals heterostructures have attracted considerable attention recently, due to their unique properties both inherited from individual two‐dimensional (2D) components and imparted from their interactions. Here, a novel few‐layer MoS2/glassy‐graphene heterostructure, synthesized by a layer‐by‐layer transfer technique, and its application as transparent photodetectors are reported for the first time. Instead of a traditional Schottky junction, coherent ohmic contact is formed at the interface between the MoS2 and the glassy‐graphene nanosheets. The device exhibits pronounced wavelength selectivity as illuminated by monochromatic lights. A responsivity of 12.3 mA W?1 and detectivity of 1.8 × 1010 Jones are obtained from the photodetector under 532 nm light illumination. Density functional theory calculations reveal the impact of specific carbon atomic arrangement in the glassy‐graphene on the electronic band structure. It is demonstrated that the band alignment of the layered heterostructures can be manipulated by lattice engineering of 2D nanosheets to enhance optoelectronic performance.  相似文献   

4.
Mercury telluride (HgTe) colloidal quantum dots (CQDs) have been developed as promising materials for the short and mid‐wave infrared photodetection applications because of their low cost, solution processing, and size tunable absorption in the short wave and mid‐infrared spectrum. However, the low mobility and poor photogain have limited the responsivity of HgTe CQD‐based photodetectors to only tens of mA W?1. Here, HgTe CQDs are integrated on a TiO2 encapsulated MoS2 transistor channel to form hybrid phototransistors with high responsivity of ≈106 A W?1, the highest reported to date for HgTe QDs. By operating the phototransistor in the depletion regime enabled by the gate modulated current of MoS2, the noise current is significantly suppressed, leading to an experimentally measured specific detectivity D* of ≈1012 Jones at a wavelength of 2 µm. This work demonstrates for the first time the potential of the hybrid 2D/QD detector technology in reaching out to wavelengths beyond 2 µm with compelling sensitivity.  相似文献   

5.
2D transition metal dichalcogenides (TMDCs) have attracted considerable attention due to their impressively high performance in optoelectronic devices. However, efficient infrared (IR) photodetection has been significantly hampered because the absorption wavelength range of most TMDCs lies in the visible spectrum. In this regard, semiconducting 2D MoTe2 can be an alternative choice owing to its smaller band gap ≈1 eV from bulk to monolayer and high carrier mobility. Here, a MoTe2/graphene heterostructure photodetector is demonstrated for efficient near‐infrared (NIR) light detection. The devices achieve a high responsivity of ≈970.82 A W?1 (at 1064 nm) and broadband photodetection (visible‐1064 nm). Because of the effective photogating effect induced by electrons trapped in the localized states of MoTe2, the devices demonstrate an extremely high photoconductive gain of 4.69 × 108 and detectivity of 1.55 × 1011 cm Hz1/2 W?1. Moreover, flexible devices based on the MoTe2/graphene heterostructure on flexible substrate also retains a good photodetection ability after thousands of times bending test (1.2% tensile strain), with a high responsivity of ≈60 A W?1 at 1064 nm at V DS = 1 V, which provides a promising platform for highly efficient, flexible, and low cost broadband NIR photodetectors.  相似文献   

6.
Hybrid organic–inorganic perovskites have shown exceptional semiconducting properties and microstructural versatility for inexpensive, solution‐processable photovoltaic and optoelectronic devices. In this work, an all‐solution‐based technique in ambient environment for highly sensitive and high‐speed flexible photodetectors using high crystal quality perovskite nanowires grown on Kapton substrate is presented. At 10 V, the optimized photodetector exhibits a responsivity as high as 0.62 A W?1, a maximum specific detectivity of 7.3 × 1012 cm Hz1/2 W?1, and a rise time of 227.2 µs. It also shows remarkable photocurrent stability even beyond 5000 bending cycles. Moreover, a deposition of poly(methyl methacrylate) (PMMA) as a protective layer on the perovskite yields significantly better stability under ambient air operation: the PMMA‐protected devices are stable for over 30 days. This work demonstrates a cost‐effective fabrication technique for high‐performance flexible photodetectors and opens opportunities for research advancements in broadband and large‐scale flexible perovskite‐based optoelectronic devices.  相似文献   

7.
Highly responsive organic image sensors are crucial for medical imaging applications. To enhance the pixelwise photoresponse in an organic image sensor, the integration of an organic photodetector with amplifiers, or the use of a highly responsive organic photodetector without an additional amplifying component, is required. The use of vertically stacked, two‐terminal organic photodetectors with photomultiplication is a promising approach for highly responsive organic image sensors owing to their simple two‐terminal structure and intrinsically large responsivity. However, there are no demonstrations of an imaging sensor array using organic photomultiplication photodetectors. The main obstacle to a sensor array is the weak‐light sensitivity, which is limited by a relatively large dark current. Herein, a highly responsive organic image sensor based on monolithic, vertically stacked two‐terminal pixels is presented. This is achieved using pixels of a vertically stacked diode‐type organic photodetector with photomultiplication. Furthermore, applying an optimized injection electrode and additionally stacked rectifying layers, this two‐terminal device simultaneously demonstrates a high responsivity (>40 A W?1), low dark current, and high rectification under illumination. An organic image sensor based on this device with an extremely simple architecture exhibits a high pixel photoresponse, demonstrating a weak‐light imaging capability even at 1 µW cm?2.  相似文献   

8.
A novel type of high performance ultraviolet (UV) photodetector (PD) based on a ZnO film has been prepared by incorporating a BiOCl nanostructure into the film. The responsivity of the BiOCl/ZnO hybrid film PD in UV region can reach 182.87 mA W?1, which is about 2.72 and 6.87 times for that of TiO2/ZnO hybrid film PD and pure ZnO film PD. The rise/decay time of BiOCl/ZnO hybrid film PD is 25.83/11.25 s, which is much shorter than that of TiO2/ZnO hybrid film PD (51.94/26.05 s) and pure ZnO film PD (69.34/>120 s). The BiOCl nanostructure can inject photogenerated electrons into the ZnO film under UV light illumination, leading to the increase of photocurrent, and forms barriers to block the straight transmission of electrons between electrodes, resulting in the decrease of decay time. The results of control experiment show that the transfer path of photogenerated electrons formed by p–n junction will be cut off after depositing gold nanoparticles on the film surface, which means this hybrid film is a unique and novel structure to improve the optoelectronic performance of photodetectors. This novel BiOCl/ZnO hybrid structure paves new route for the development of film PDs based on ZnO film.  相似文献   

9.
Molybdenum disulfide (MoS2), a typical 2D metal dichalcogenide (2DMD), has exhibited tremendous potential in optoelectronic device applications, especially in photodetection. However, due to the weak light absorption of planar mono‐/multilayers, limited cutoff wavelength edge, and lack of high‐quality junctions, most reported MoS2‐based photodetectors show undesirable performance. Here, a structurized 3D heterojunction of RGO–MoS2/pyramid Si is demonstrated via a simple solution‐processing method. Owing to the improved light absorption by the pyramid structure, the narrowed bandgap of the MoS2 by the imperfect crystallinity, and the enhanced charge separation/transportation by the inserted reduced graphene oxide (RGO), the assembled photodetector exhibits excellent performance in terms of a large responsivity of 21.8 A W?1, extremely high detectivity up to 3.8 × 1015 Jones (Jones = cm Hz1/2 W?1) and ultrabroad spectrum response ranging from 350 nm (ultraviolet) to 4.3 µm (midwave infrared). These device parameters represent the best results for MoS2‐based self‐driven photodetectors, and the detectivity value sets a new record for the 2DMD‐based photodetectors reported thus far. Prospectively, the design of novel 3D heterojunction can be extended to other 2DMDs, opening up the opportunities for a host of high‐performance optoelectronic devices.  相似文献   

10.
Van der Waals heterostructures based on 2D layered materials have received wide attention for their multiple applications in optoelectronic devices, such as solar cells, light‐emitting devices, and photodiodes. In this work, high‐performance photovoltaic photodetectors based on MoTe2/MoS2 vertical heterojunctions are demonstrated by exfoliating‐restacking approach. The fundamental electric properties and band structures of the junction are revealed and analyzed. It is shown that this kind of photodetectors can operate under zero bias with high on/off ratio (>105) and ultralow dark current (≈3 pA). Moreover, a fast response time of 60 µs and high photoresponsivity of 46 mA W?1 are also attained at room temperature. The junctions based on 2D materials are expected to constitute the ultimate functional elements of nanoscale electronic and optoelectronic applications.  相似文献   

11.
A graphene/n‐type silicon (n‐Si) heterojunction has been demonstrated to exhibit strong rectifying behavior and high photoresponsivity, which can be utilized for the development of high‐performance photodetectors. However, graphene/n‐Si heterojunction photodetectors reported previously suffer from relatively low specific detectivity due to large dark current. Here, by introducing a thin interfacial oxide layer, the dark current of graphene/n‐Si heterojunction has been reduced by two orders of magnitude at zero bias. At room temperature, the graphene/n‐Si photodetector with interfacial oxide exhibits a specific detectivity up to 5.77 × 1013 cm Hz1/2 W‐1 at the peak wavelength of 890 nm in vacuum, which is highest reported detectivity at room temperature for planar graphene/Si heterojunction photodetectors. In addition, the improved graphene/n‐Si heterojunction photodetectors possess high responsivity of 0.73 A W?1 and high photo‐to‐dark current ratio of ≈107. The current noise spectral density of the graphene/n‐Si photodetector has been characterized under ambient and vacuum conditions, which shows that the dark current can be further suppressed in vacuum. These results demonstrate that graphene/Si heterojunction with interfacial oxide is promising for the development of high detectivity photodetectors.  相似文献   

12.
Low trap‐state density, high carrier mobility, and efficient charge carrier collection are key parameters for photodetectors with high sensitivity and fast response time. This study demonstrates a simple solution growth method to prepare CsPbBr3 microcrystals (MCs) with low trap‐state density. Time‐dependent photoluminescence study with one‐photon excitation (OPE) and two‐photon excitation (TPE) indicates that CsPbBr3 MCs exhibit fast carrier diffusion with carrier mobility over 100 cm2 V?1 S?1. Furthermore, CsPbBr3 MC‐based photodetectors with high charge carriers' collection efficiency are fabricated. Such photodetectors show ultrahigh responsivity (R ) up to 6 × 104 A W?1 with OPE and high R up to 6 A W?1 with TPE. The R for OPE is over one order of magnitude higher (the R for TPE is three orders of magnitude higher) than that of previously reported all‐inorganic perovskite‐based photodetectors. Moreover, the photodetectors exhibit fast response time of ≈1 ms, which corresponds to a gain ≈105 and a gain‐ bandwidth product of 108 Hz for OPE (a gain ≈103 and a gain‐bandwidth product of 106 Hz for TPE).  相似文献   

13.
Strong near‐surface electromagnetic field formed by collective oscillation of electrons on Cu nanostructure a shows a strong dependence on geometry, offering a promising approach to boost the light absorption of ZnO photoactive layers with enhanced plasmon scattering. Here, a facile way to fabricate UV photodetectors with tunable configuration of the self‐assembled Cu nanostructures on ZnO thin films is reported. The incident lights are effectively confined in ZnO photoactive layers with the existence of the uplayer Cu nanostructures, and the interdiffusion of Cu atoms during fabrication of the Cu nanostructures can improve the carrier transfer in ZnO thin films. The optical properties of the hybrid architectures are successfully tailored over a control of the geometric evolution of the Cu nanostructures, resulting in significantly enhanced photocurrent and responsivity of 2.26 mA and 234 A W?1 under a UV light illumination of 0.62 mW cm?2 at 10 V, respectively. The photodetectors also exhibit excellent reproducibility, stability, and UV–visible rejection ratio (R370 nm/R500 nm) of ≈370, offering an approach of high‐performance UV photodetectors for practical applications.  相似文献   

14.
A demonstration is presented of how significant improvements in all‐2D photodetectors can be achieved by exploiting the type‐II band alignment of vertically stacked WS2/MoS2 semiconducting heterobilayers and finite density of states of graphene electrodes. The photoresponsivity of WS2/MoS2 heterobilayer devices is increased by more than an order of magnitude compared to homobilayer devices and two orders of magnitude compared to monolayer devices of WS2 and MoS2, reaching 103 A W?1 under an illumination power density of 1.7 × 102 mW cm?2. The massive improvement in performance is due to the strong Coulomb interaction between WS2 and MoS2 layers. The efficient charge transfer at the WS2/MoS2 heterointerface and long trapping time of photogenerated charges contribute to the observed large photoconductive gain of ≈3 × 104. Laterally spaced graphene electrodes with vertically stacked 2D van der Waals heterostructures are employed for making high‐performing ultrathin photodetectors.  相似文献   

15.
2D materials are considered as intriguing building blocks for next‐generation optoelectronic devices. However, their photoresponse performance still needs to be improved for practical applications. Here, ultrasensitive 2D phototransistors are reported employing chemical vapor deposition (CVD)‐grown 2D Bi2O2Se transferred onto silicon substrates with a noncorrosive transfer method. The as‐transferred Bi2O2Se preserves high quality in contrast to the serious quality degradation in hydrofluoric‐acid‐assisted transfer. The phototransistors show a responsivity of 3.5 × 104 A W?1, a photoconductive gain of more than 104, and a time response in the order of sub‐millisecond. With back gating of the silicon substrate, the dark current can be reduced to several pA. This yields an ultrahigh sensitivity with a specific detectivity of 9.0 × 1013 Jones, which is one of the highest values among 2D material photodetectors and two orders of magnitude higher than that of other CVD‐grown 2D materials. The high performance of the phototransistor shown here together with the developed unique transfer technique are promising for the development of novel 2D‐material‐based optoelectronic applications as well as integrating with state‐of‐the‐art silicon photonic and electronic technologies.  相似文献   

16.
Zinc oxide (ZnO) nanosheets have demonstrated outstanding electrical and optical properties, which are well suited for ultraviolet (UV) photodetectors. However, they have a high density of intrinsically unfilled traps, and it is difficult to achieve p‐type doping, leading to the poor performance for low light level switching ratio and a high dark current that limit practical applications in UV photodetection. Here, UV photodetectors based on ZnO nanosheets are demonstrated, whose performance is significantly improved by using a ferroelectric localized field. Specifically, the photodetectors have achieved a responsivity of up to 3.8 × 105 A W?1, a detectivity of 4.4 × 1015 Jones, and a photocurrent gain up to 1.24 × 106. These device figures of merit are far beyond those of traditional ZnO ultraviolet photodetectors. In addition, the devices' initial dark current can be easily restored after continuous photocurrent measurement by using a positive gate voltage pulse. This study establishes a new approach to produce high‐sensitivity and low‐dark‐current ultraviolet photodetectors and presents a crucial step for further practical applications.  相似文献   

17.
The combination of graphene with semiconductor materials in heterostructure photodetectors enables amplified detection of femtowatt light signals using micrometer‐scale electronic devices. Presently, long‐lived charge traps limit the speed of such detectors, and impractical strategies, e.g., the use of large gate‐voltage pulses, have been employed to achieve bandwidths suitable for applications such as video‐frame‐rate imaging. Here, atomically thin graphene–WS2 heterostructure photodetectors encapsulated in an ionic polymer are reported, which are uniquely able to operate at bandwidths up to 1.5 kHz whilst maintaining internal gain as large as 106. Highly mobile ions and the nanometer‐scale Debye length of the ionic polymer are used to screen charge traps and tune the Fermi level of the graphene over an unprecedented range at the interface with WS2. Responsivity R = 106 A W?1 and detectivity D* = 3.8 × 1011 Jones are observed, approaching that of single‐photon counters. The combination of both high responsivity and fast response times makes these photodetectors suitable for video‐frame‐rate imaging applications.  相似文献   

18.
Emerging novel applications at the forefront of innovation horizon raise new requirements including good flexibility and unprecedented properties for the photoelectronic industry. On account of diversity in transport and photoelectric properties, 2D layered materials have proven as competent building blocks toward next‐generation photodetectors. Herein, an all‐2D Bi2Te3‐SnS‐Bi2Te3 photodetector is fabricated with pulsed‐laser deposition. It is sensitive to broadband wavelength from ultraviolet (370 nm) to near‐infrared (808 nm). In addition, it exhibits great durability to bend, with intact photoresponse after 100 bend cycles. Upon 370 nm illumination, it achieves a high responsivity of 115 A W?1, a large external quantum efficiency of 3.9 × 104%, and a superior detectivity of 4.1 × 1011 Jones. They are among the best figures‐of‐merit of state‐of‐the‐art 2D photodetectors. The synergistic effect of SnS's strong light–matter interaction, efficient carrier separation of Bi2Te3–SnS interface, expedite carrier injection across Bi2Te3–SnS interface, and excellent carrier collection of Bi2Te3 topological insulator electrodes accounts for the superior photodetection properties. In summary, this work depicts a facile all‐in‐one fabrication strategy toward a Bi2Te3‐SnS‐Bi2Te3 photodetector. More importantly, it reveals a novel all‐2D concept for construction of flexible, broadband, and high‐performance photoelectronic devices by integrating 2D layered metallic electrodes and 2D layered semiconducting channels.  相似文献   

19.
2D planar structures of nonlayered wide‐bandgap semiconductors enable distinguished electronic properties, desirable short wavelength emission, and facile construction of 2D heterojunction without lattice match. However, the growth of ultrathin 2D nonlayered materials is limited by their strong covalent bonded nature. Herein, the synthesis of ultrathin 2D nonlayered CuBr nanosheets with a thickness of about 0.91 nm and an edge size of 45 µm via a controllable self‐confined chemical vapor deposition method is described. The enhanced spin‐triplet exciton (Zf, 2.98 eV) luminescence and polarization‐enhanced second‐harmonic generation based on the 2D CuBr flakes demonstrate the potential of short‐wavelength luminescent applications. Solar‐blind and self‐driven ultraviolet (UV) photodetectors based on the as‐synthesized 2D CuBr flakes exhibit a high photoresponsivity of 3.17 A W?1, an external quantum efficiency of 1126%, and a detectivity (D*) of 1.4 × 1011 Jones, accompanied by a fast rise time of 32 ms and a decay time of 48 ms. The unique nonlayered structure and novel optical properties of the 2D CuBr flakes, together with their controllable growth, make them a highly promising candidate for future applications in short‐wavelength light‐emitting devices, nonlinear optical devices, and UV photodetectors.  相似文献   

20.
Inverse photoresponse is discovered from phototransistors based on molybdenum disulfide (MoS2). The devices are capable of detecting photons with energy below the bandgap of MoS2. Under the illumination of near‐infrared (NIR) light at 980 and 1550 nm, negative photoresponses with short response time (50 ms) are observed for the first time. Upon visible‐light illumination, the phototransistors exhibit positive photoresponse with ultrahigh responsivity on the order of 104–105 A W?1 owing to the photogating effect and charge trapping mechanism. Besides, the phototransistors can detect a weak visible‐light signal with effective optical power as low as 17 picowatts (pW). A thermally induced photoresponse mechanism, the bolometric effect, is proposed as the cause of the negative photocurrent in the NIR regime. The thermal energy of the NIR radiation is transferred to the MoS2 crystal lattice, inducing lattice heating and resistance increase. This model is experimentally confirmed by low‐temperature electrical measurements. The bolometric coefficient calculated from the measured transport current change with temperature is ?33 nA K?1. These findings offer a new approach to develop sub‐bandgap photodetectors and other novel optoelectronic devices based on 2D layered materials.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号