首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Here, we quantify relationships between wind farm efficiency and wind speed, direction, turbulence and atmospheric stability using power output from the large offshore wind farm at Nysted in Denmark. Wake losses are, as expected, most strongly related to wind speed variations through the turbine thrust coefficient; with direction, atmospheric stability and turbulence as important second order effects. While the wind farm efficiency is highly dependent on the distribution of wind speeds and wind direction, it is shown that the impact of turbine spacing on wake losses and turbine efficiency can be quantified, albeit with relatively large uncertainty due to stochastic effects in the data. There is evidence of the ‘deep array effect’ in that wake losses in the centre of the wind farm are under‐estimated by the wind farm model WAsP, although overall efficiency of the wind farm is well predicted due to compensating edge effects. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

2.
The modelling of wind turbine wakes is investigated in this paper using a Navier–Stokes solver employing the k–ω turbulence model appropriately modified for atmospheric flows. It is common knowledge that even single‐wind turbine wake predictions with computational fluid dynamic methods underestimate the near wake deficit, directly contributing to the overestimation of the power of the downstream turbines. For a single‐wind turbine, alternative modelling enhancements under neutral and stable atmospheric conditions are tested in this paper to account for and eventually correct the turbulence overestimation that is responsible for the faster flow recovery that appears in the numerical predictions. Their effect on the power predictions is evaluated with comparison with existing wake measurements. A second issue addressed in this paper concerns multi‐wake predictions in wind farms, where the estimation of the reference wind speed that is required for the thrust calculation of a turbine located in the wake(s) of other turbines is not obvious. This is overcome by utilizing an induction factor‐based concept: According to it, the definition of the induction factor and its relationship with the thrust coefficient are employed to provide an average wind speed value across the rotor disk for the estimation of the axial force. Application is made on the case of five wind turbines in a row. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

3.
Kevin B. Howard  Michele Guala 《风能》2016,19(8):1371-1389
Data collected at the Eolos wind research facility and in the Saint Anthony Falls Laboratory atmospheric boundary layer wind tunnel are used to study the impact of turbulent inflow conditions on the performance of a horizontal axis wind turbine on flat terrain. The Eolos test facility comprises a 2.5MW Clipper Liberty C96 wind turbine, a meteorological tower and a WindCube LiDAR wind profiler. A second set of experiments was completed using particle image velocimetry upwind and in a wake of a miniature turbine in the wind tunnel to complement LiDAR measurements near the Eolos turbine. Joint statistics, most notably temporal cross‐correlations between wind velocity at different heights and turbine performance, are presented and compared at both the laboratory and field scales. The work (i) confirms that the turbine exerts a blockage effect on the mean flow and (ii) suggests a key, specific elevation, above hub height, where the incoming velocity signal is statistically most relevant to turbine operation and control. Wind tunnel measurements confirm such indication and suggest that hub height velocity measurements are optimal for wind preview and/or as input for active control strategies in aligned turbine configurations. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

4.
A wind tunnel experiment has been performed to quantify the Reynolds number dependence of turbulence statistics in the wake of a model wind turbine. A wind turbine was placed in a boundary layer flow developed over a smooth surface under thermally neutral conditions. Experiments considered Reynolds numbers on the basis of the turbine rotor diameter and the velocity at hub height, ranging from Re = 1.66 × 104 to 1.73 × 105. Results suggest that main flow statistics (mean velocity, turbulence intensity, kinematic shear stress and velocity skewness) become independent of Reynolds number starting from Re ≈ 9.3 × 104. In general, stronger Reynolds number dependence was observed in the near wake region where the flow is strongly affected by the aerodynamics of the wind turbine blades. In contrast, in the far wake region, where the boundary layer flow starts to modulate the dynamics of the wake, main statistics showed weak Reynolds dependence. These results will allow us to extrapolate wind tunnel and computational fluid dynamic simulations, which often are conducted at lower Reynolds numbers, to full‐scale conditions. In particular, these findings motivates us to improve existing parameterizations for wind turbine wakes (e.g. velocity deficit, wake expansion, turbulence intensity) under neutral conditions and the predictive capabilities of atmospheric large eddy simulation models. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

5.
Power production of an onshore wind farm is investigated through supervisory control and data acquisition data, while the wind field is monitored through scanning light detection and ranging measurements and meteorological data acquired from a met‐tower located in proximity to the turbine array. The power production of each turbine is analysed as functions of the operating region of the power curve, wind direction and atmospheric stability. Five different methods are used to estimate the potential wind power as a function of time, enabling an estimation of power losses connected with wake interactions. The most robust method from a statistical standpoint is that based on the evaluation of a reference wind velocity at hub height and experimental mean power curves calculated for each turbine and different atmospheric stability regimes. The synergistic analysis of these various datasets shows that power losses are significant for wind velocities higher than cut‐in wind speed and lower than rated wind speed of the turbines. Furthermore, power losses are larger under stable atmospheric conditions than for convective regimes, which is a consequence of the stability‐driven variability in wake evolution. Light detection and ranging measurements confirm that wind turbine wakes recover faster under convective regimes, thus alleviating detrimental effects due to wake interactions. For the wind farm under examination, power loss due to wake shadowing effects is estimated to be about 4% and 2% of the total power production when operating under stable and convective conditions, respectively. However, cases with power losses about 60‐80% of the potential power are systematically observed for specific wind turbines and wind directions. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

6.
The presented work investigates the impact of different sheared velocity profiles in the atmospheric boundary layer on the characteristics of a wind turbine by modifying the wall roughness coefficients in the logarithmic velocity profile. Moreover, the rotor and wake characteristics in dependence of the turbulence boundary conditions are investigated. In variant I, the turbulence boundary conditions are defined in accordance to the logarithmic velocity profile with different wall roughness lengths. In variant II, the turbulent kinetic energy and turbulent viscosity remain independent of the velocity profile and represent the free‐stream turbulence level. With an increase of the shear in the velocity profile, the amplitudes in the 3/rev characteristics of rotor thrust and rotor torque, induction factors, and effective angles of attack are increased. In variant I, the overall levels of thrust coefficient are hardly affected by the velocity profiles resulting from different wall roughness length values. The power coefficient is reduced about 1%. Conversely, compared with variant II, a difference of 2% in the power coefficient has been detected. Moreover, the wake recovery process strongly depends on the turbulence boundary condition. Simulations are carried out on an industrial 900‐kW wind turbine with the incompressible U‐RANS solver THETA.  相似文献   

7.
Alfredo Peña  Ole Rathmann 《风能》2014,17(8):1269-1285
We extend the infinite wind‐farm boundary‐layer (IWFBL) model of Frandsen to take into account atmospheric static stability effects. This extended model is compared with the IWFBL model of Emeis and to the Park wake model used in Wind Atlas Analysis and Application Program (WAsP), which is computed for an infinite wind farm. The models show similar behavior for the wind‐speed reduction when accounting for a number of surface roughness lengths, turbine to turbine separations and wind speeds under neutral conditions. For a wide range of atmospheric stability and surface roughness length values, the extended IWFBL model of Frandsen shows a much higher wind‐speed reduction dependency on atmospheric stability than on roughness length (roughness has been generally thought to have a major effect on the wind‐speed reduction). We further adjust the wake‐decay coefficient of the Park wake model for an infinite wind farm to match the wind‐speed reduction estimated by the extended IWFBL model of Frandsen for different roughness lengths, turbine to turbine separations and atmospheric stability conditions. It is found that the WAsP‐recommended values for the wake‐decay coefficient of the Park wake model are (i) larger than the adjusted values for a wide range of neutral to stable atmospheric stability conditions, a number of roughness lengths and turbine separations lower than ~ 10 rotor diameters and (ii) too large compared with those obtained by a semiempirical formulation (relating the ratio of the friction to the hub‐height free velocity) for all types of roughness and atmospheric stability conditions. © 2013 The Authors. Wind Energy published by John Wiley & Sons, Ltd.  相似文献   

8.
Turbulence characteristics of the wind farm inflow have a significant impact on the energy production and the lifetime of a wind farm. The common approach is to use the meteorological mast measurements to estimate the turbulence intensity (TI) but they are not always available and the turbulence varies over the extent of the wind farm. This paper describes a method to estimate the TI at individual turbine locations by using the rotor effective wind speed calculated via high frequency turbine data.The method is applied to Lillgrund and Horns Rev-I offshore wind farms and the results are compared with TI derived from the meteorological mast, nacelle mounted anemometer on the turbines and estimation based on the standard deviation of power. The results show that the proposed TI estimation method is in the best agreement with the meteorological mast. Therefore, the rotor effective wind speed is shown to be applicable for the TI assessment in real-time wind farm calculations under different operational conditions. Furthermore, the TI in the wake is seen to follow the same trend with the estimated wake deficit which enables to quantify the turbulence in terms of the wake loss locally inside the wind farm.  相似文献   

9.
Shengbai Xie  Cristina Archer 《风能》2015,18(10):1815-1838
Mean and turbulent properties of the wake generated by a single wind turbine are studied in this paper with a new large eddy simulation (LES) code, the wind turbine and turbulence simulator (WiTTS hereafter). WiTTS uses a scale‐dependent Lagrangian dynamical model of the sub‐grid shear stress and actuator lines to simulate the effects of the rotating blades. WiTTS is first tested by simulating neutral boundary layers without and with a wind turbine and then used to study the common assumptions of self‐similarity and axisymmetry of the wake under neutral conditions for a variety of wind speeds and turbine properties. We find that the wind velocity deficit generally remains self similarity to a Gaussian distribution in the horizontal. In the vertical, the Gaussian self‐similarity is still valid in the upper part of the wake, but it breaks down in the region of the wake close to the ground. The horizontal expansion of the wake is always faster and greater than the vertical expansion under neutral stability due to wind shear and impact with the ground. Two modifications to existing equations for the mean velocity deficit and the maximum added turbulence intensity are proposed and successfully tested. The anisotropic wake expansion is taken into account in the modified model of the mean velocity deficit. Turbulent kinetic energy (TKE) budgets show that production and advection exceed dissipation and turbulent transport. The nacelle causes significant increase of every term in the TKE budget in the near wake. In conclusion, WiTTS performs satisfactorily in the rotor region of wind turbine wakes under neutral stability. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

10.
Numerous studies have shown that wind turbine wakes within a large wind farm bring about changes to both the dynamics and thermodynamics of the atmospheric boundary layers (ABL). Previously, we investigated the relative humidity budget within a wind farm via field measurements in the near‐wake region and large eddy simulations (LES). The effect of the compounding wakes within a large wind farm on the relative humidity was also investigated by LES. In this study, we investigate how the areas of relative humidity variation, that was observed in the near‐wake, develop downstream in the shadow region of a large wind farm. To this end, LES of a wind farm consisting of 8x6 wind turbines with periodic boundary condition in the lateral direction (inferring an infinitely wide farm) interacting with a stable ABL is carried out. Two wind farm layouts, aligned and staggered, are considered in the analysis and the results from both configurations are compared to each other. It is observed that a decrease of relative humidity underneath the hub height and an increase above the hub height build up within the wind farm, and are maintained in the downstream of the farm for long distances. The staggered farm layout is more effective in keeping a more elongated region of low relative humidity underneath the hub, when compared to the aligned layout.  相似文献   

11.
Understanding the detailed dynamics of wind turbine wakes is critical to predicting the performance and maximizing the efficiency of wind farms. This knowledge requires atmospheric data at a high spatial and temporal resolution, which are not easily obtained from direct measurements. Therefore, research is often based on numerical models, which vary in fidelity and computational cost. The simplest models produce axisymmetric wakes and are only valid beyond the near wake. Higher‐fidelity results can be obtained by solving the filtered Navier–Stokes equations at a resolution that is sufficient to resolve the relevant turbulence scales. This work addresses the gap between these two extremes by proposing a stochastic model that produces an unsteady asymmetric wake. The model is developed based on a large‐eddy simulation (LES) of an offshore wind farm. Because there are several ways of characterizing wakes, the first part of this work explores different approaches to defining global wake characteristics. From these, a model is developed that captures essential features of a LES‐generated wake at a small fraction of the cost. The synthetic wake successfully reproduces the mean characteristics of the original LES wake, including its area and stretching patterns, and statistics of the mean azimuthal radius. The mean and standard deviation of the wake width and height are also reproduced. This preliminary study focuses on reproducing the wake shape, while future work will incorporate velocity deficit and meandering, as well as different stability scenarios. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

12.
The atmospheric flow phenomenon known as the Low Level Jet (LLJ) is an important source of wind power production in the Great Plains. However, due to the lack of measurements with the precision and vertical resolution needed, particularly at rotor heights, it is not well‐characterized or understood in offshore regions being considered for wind‐farm development. The present paper describes the properties of LLJs and wind shear through the rotor layer of a hypothetical wind turbine, as measured from a ship‐borne Doppler lidar in the Gulf of Maine in July–August 2004. LLJs, frequently observed below 600 m, were mostly during nighttime and transitional periods, but they were also were seen during some daytime hours. The presence of a LLJ significantly modified wind profiles producing vertical wind speed shear. When the wind shear was strong, the estimates of wind power based upon wind speeds measured at hub‐height could have significant errors. Additionally, the inference of hub‐height winds from near‐surface measurements may introduce further error in the wind power estimate. The lidar dataset was used to investigate the uncertainty of the simplified power‐law relation that is often employed in engineering approaches for the extrapolation of surface winds to higher elevations. The results show diurnal and spatial variations of the shear exponent empirically found from surface and hub‐height measurements. Finally, the discrepancies between wind power estimates using lidar‐measured hub‐height winds and rotor equivalent winds are discussed. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

13.
Aerodynamic wake interaction between commercial scale wind turbines can be a significant source of power losses and increased fatigue loads across a wind farm. Significant research has been dedicated to the study of wind turbine wakes and wake model development. This paper profiles influential wake regions for an onshore wind farm using 6 months of recorded SCADA (supervisory control and data acquisition) data. An average wind velocity deficit of over 30% was observed corresponding to power coefficient losses of 0.2 in the wake region. Wind speed fluctuations are also quantified for an array of turbines, inferring an increase in turbulence within the wake region. A study of yaw data within the array showed turbine nacelle misalignment under a range of downstream wake angles, indicating a characteristic of wind turbine behaviour not generally considered in wake studies. The turbines yaw independently in order to capture the increased wind speeds present due to the lateral influx of turbulent wind, contrary to many experimental and simulation methods found in the literature. Improvements are suggested for wind farm control strategies that may improve farm‐wide power output. Additionally, possible causes for wind farm wake model overestimation of wake losses are proposed.Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

14.
Individual turbine location within a wind plant defines the flow characterisitcs experienced by a given turbine. Irregular turbine arrays and inflow misalignment can reduce plant efficiency by producing highly asymmetric wakes with enhanced downstream longevity. Changes in wake dynamics as a result of turbine position were quantified in a wind tunnel experiment. Scale model turbines with a rotor diameter of 20 cm and a hub height of 24 cm were placed in symmetric, asymmetric, and rotated configurations. Simultaneous hub height velocity measurements were recorded at 11 spanwise locations for three distances downstream of the turbine array under two inflow conditions. Wake interactions are described in terms of the time‐average streamwise velocity and turbulence intensity as well as the displacement, momentum, and energy thicknesses. The effects of wake merging on power generation are quantified, and the two‐point correlation is used to examine symmetry in the mean velocity between wakes. The results indicate that both asymmetric and rotated wind plant arrangements can produce long‐lasting wakes. At shallow angles, rotated configurations compound the effects of asymmetric arrangements and greatly increase downstream wake persistence.  相似文献   

15.
Wind data collected at nine meteorological towers at the Goodnoe Hills MOD-2 wind turbine site were analyzed to characterize the wind flow over the site both in the absence and presence of wind turbine wakes. Free-flow characteristics examined were the variability of wind speed and turbulence intensity across the site as a function of wind direction and surface roughness. The nine towers' data revealed that scattered areas of trees upwind of the site caused pronounced variations in the wind flow over the site. At two towers that were frequently downwind of an extensive grove of trees, up to 30% reductions in wind speed and a factor of 2 to 3 increase in turbulence intensity were measured. A substantial increase in the magnitude of the wind gusts, as well as a considerable decrease in the mean wind speed, was observed when a tower was downwind of the trees.Wind turbine wake characteristics analyzed included the average velocity deficits, wake turbulence, wake width, wake trajectory, vertical profile of the wake, and the stratification of wake properties as a function of the ambient wind speed and turbulence intensity. The wind turbine rotor disk spanned a height of 15 m to 107 m. The nine towers' data permitted a detailed analysis of the wake behavior at a height of 32 m at various downwind distances from 2 to 10 rotor diameters (D). The relationship between velocity deficit and downwind distance was surprisingly linear, with average maximum deficits ranging from 34% at 2 D to 7% at 10 D. Largest deficits were at low wind speeds and low turbulence intensities. Average wake widths were 2.8 D at a downwind distance of 10 D. Implications for turbine spacing are that, for a wind farm with a 10-D row separation, array losses would be significantly greater for a 2-D than a 3-D spacing because of incremental effects caused by overlapping wakes. Other interesting wake properties observed were the wake turbulence (which was greatest along the flanks of the wake). the vertical variation of deficits (which were greater below hub height than above), and the trajectory of the wake (which was essentially straight).  相似文献   

16.
It is well accepted that the wakes created by upstream turbines significantly impact on the power production and fatigue loading of downstream turbines and that this phenomenon affects wind farm performance. Improving the understanding of wake effects and overall efficiency is critical for the optimisation of layout and operation of increasingly large wind farms. In the present work, the NREL 5‐MW reference turbine was simulated using blade element embedded Reynolds‐averaged Navier‐Stokes computations in sheared onset flow at three spatial configurations of two turbines at and above rated flow speed to evaluate the effects of wakes on turbine performance and subsequent wake development. Wake recovery downstream of the rearward turbine was enhanced due to the increased turbulence intensity in the wake, although in cases where the downstream turbine was laterally offset from the upstream turbine this resulted in relatively slower recovery. Three widely used wake superposition models were evaluated and compared with the simulated flow‐field data. It was found that when the freestream hub‐height flow speed was at the rated flow speed, the best performing wake superposition model varied depending according to the turbine array layout. However, above rated flow speed where the wake recovery distance is reduced, it was found that linear superposition of single turbine velocity deficits was the best performing model for all three spatial layouts studied.  相似文献   

17.
To identify the influence of wind shear and turbulence on wind turbine performance, flat terrain wind profiles are analysed up to a height of 160 m. The profiles' shapes are found to extend from no shear to high wind shear, and on many occasions, local maxima within the profiles are also observed. Assuming a certain turbine hub height, the profiles with hub‐height wind speeds between 6 m s?1 and 8 m s?1 are normalized at 7 m s?1 and grouped to a number of mean shear profiles. The energy in the profiles varies considerably for the same hub‐height wind speed. These profiles are then used as input to a Blade Element Momentum model that simulates the Siemens 3.6 MW wind turbine. The analysis is carried out as time series simulations where the electrical power is the primary characterization parameter. The results of the simulations indicate that wind speed measurements at different heights over the swept rotor area would allow the determination of the electrical power as a function of an ‘equivalent wind speed’ where wind shear and turbulence intensity are taken into account. Electrical power is found to correlate significantly better to the equivalent wind speed than to the single point hub‐height wind speed. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

18.
In this study, we conduct a series of large‐eddy simulations (LESs) to study the impact of different incoming turbulent boundary layer flows over large wind farms, with a particular focus on the overall efficiency of electricity production and the evolution of the turbine wake structure. Five representative turbine placements in the large wind farm are considered, including an aligned layout and four staggered layouts with lateral or vertical offset arrangements. Four incoming flow conditions are used and arranged from the LESs of the ABL flow over homogeneous flat surfaces with four different aerodynamic roughness lengths (i.e., z0 = 0.5, 0.1, 0.01, and 0.0001 m), where the hub‐height turbulence intensity levels are about 11.1%, 8.9%, 6.8%, and 4.9%, respectively. The simulation results indicate that an enhancement in the inflow turbulence level can effectively increase the power generation efficiency in the large wind farms, with about 23.3% increment on the overall farm power production and up to about 32.0% increment on the downstream turbine power production. Under the same inflow condition, the change of the turbine‐array layouts can increase power outputs within the first 10 turbine rows, which has a maximum increment of about 26.5% under the inflow condition with low turbulence. By comparison, the increase of the inflow turbulence intensity facilitates faster wake recovery that raises the power generation efficiency of large wind farms than the adjustment of the turbine placing layouts.  相似文献   

19.
Field‐scale and wind tunnel experiments were conducted in the 2D to 6D turbine wake region to investigate the effect of geometric and Reynolds number scaling on wake meandering. Five field deployments took place: 4 in the wake of a single 2.5‐MW wind turbine and 1 at a wind farm with numerous 2‐MW turbines. The experiments occurred under near‐neutral thermal conditions. Ground‐based lidar was used to measure wake velocities, and a vertical array of met‐mounted sonic anemometers were used to characterize inflow conditions. Laboratory tests were conducted in an atmospheric boundary layer wind tunnel for comparison with the field results. Treatment of the low‐resolution lidar measurements is discussed, including an empirical correction to velocity spectra using colocated lidar and sonic anemometer. Spectral analysis on the laboratory‐ and utility‐scale measurements confirms a meandering frequency that scales with the Strouhal number St = fD/U based on the turbine rotor diameter D. The scaling indicates the importance of the rotor‐scaled annular shear layer to the dynamics of meandering at the field scale, which is consistent with findings of previous wind tunnel and computational studies. The field and tunnel spectra also reveal a deficit in large‐scale turbulent energy, signaling a sheltering effect of the turbine, which blocks or deflects the largest flow scales of the incoming flow. Two different mechanisms for wake meandering—large scales of the incoming flow and shear instabilities at relatively smaller scales—are discussed and inferred to be related to the turbulent kinetic energy excess and deficit observed in the wake velocity spectra.  相似文献   

20.
The thermal heterogeneity between the land and sea might affect the wind patterns within wind farms (WF) located near seashores. This condition was modeled with a large-eddy simulation of a numerical weather prediction model (Weather Research and Forecasting) that included the wind turbine actuator disk model (ADM). The assumed condition was that the downstream surface temperature was relatively higher (unstably stratified condition) than the neutrally stratified upstream wind. Under this condition, a thermal internal boundary layer (TIBL) was developed from an area where a step-changed surface temperature was implemented. The combined effect of the wake deficit due to the WF and velocity recovery as a result of enhanced mixing under unstable stratification showed significant modulation of the wind speed at the hub height when local atmospheric stability affected the wind turbine (WT). We show that TIBL height depends on the variables to be evaluated as the threshold. A precise prediction of the TIBL height is beneficial for better estimation of power generation. A prediction model was proposed as an extension of the internal boundary layer (IBL) model for neutral stratification, and the results tracked TIBL development reasonably well. The effects of WFs on surface properties (e.g., friction velocity, heat flux, and Obukhov length) and the tendency of IBL growth were minor. A single WT wake was also assessed under several TIBL developmental stages (i.e., location) and thermal stratification conditions. The standard deviation of the wake deficit increased vertically during the development stage of the TIBL. In contrast, the coefficients in the horizontal and vertical directions were comparable when the WT was deep inside the TIBL.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号