首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
This paper addresses the global stabilization via adaptive output‐feedback for a class of uncertain nonlinear systems. Remarkably, the systems under investigation are with multiple uncertainties: unknown control directions, unknown growth rates and unknown input bias, and can be used to describe more physical plants. Multiple uncertainties, which usually cannot be compensated by a sole compensation technique, may give rise to big technical difficulty for controller design. To overcome such difficulty and to achieve the global stabilization, a new adaptive output‐feedback scheme is proposed in this paper, by flexibly combining Nussbaum‐type function, tuning function technique and extended state observer. It is shown that, under the designed controller, the system states globally converge to zero. A simulation example on non‐zero set‐point regulation is given to demonstrate the effectiveness of the theoretical results.  相似文献   

2.
This paper presents a pseudo proportional-integral-derivative (PID) tracking control strategy for general non-Gaussian stochastic systems based on a linear B-spline model for the output probability density functions (PDFs). The objective is to control the conditional PDFs of the system output to follow a given target function. Different from existing methods, the control structure (i.e., the PID) is imposed before the output PDF controller design. Following the linear B-spline approximation on the measured output PDFs, the concerned problem is transferred into the tracking of given weights which correspond to the desired PDF. For systems with or without model uncertainties, it is shown that the solvability can be casted into a group of matrix inequalities. Furthermore, an improved controller design procedure based on the convex optimization is proposed which can guarantee the required tracking convergence with an enhanced robustness. Simulations are given to demonstrate the efficiency of the proposed approach and encouraging results have been obtained.  相似文献   

3.
A new control design method based on signal compensation is proposed for a class of uncertain multi‐input multi‐output (MIMO) nonlinear systems in block‐triangular form with nonlinear uncertainties, unknown virtual control coefficients, strongly coupled interconnections, time‐varying delays, and external disturbances. By this method, the controller design is performed in a backstepping manner. At each step of backstepping procedure, a nominal virtual controller is first designed to get desired output tracking for the nominal disturbance‐free subsystem, and then a robust virtual compensator is designed to restrain the effect of the uncertainties, delays involved in the subsystem, and the couplings among the subsystems. The designed controller is linear and time‐invariant, so the explosion of complexity in the control law is avoid. It is proved that robust stability and robust practical tracking property of the closed‐loop system can be ensured, and the tracking errors can be made as small as desired. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

4.
研究一类不确定非线性系统的鲁棒输出跟踪控制问题。应用输入/输出反馈线性化法和李亚普诺夫方法,提出一种基于不确定项上界的连续型鲁棒输出跟踪控制器设计方法。该控制器不仅可确保闭环系统的状态一致最终有界,使系统输出按指数规律跟踪期望输出,而且计算简单,更易实现。仿真结果证明了该方法的可行性与有效性。  相似文献   

5.
In this paper, the output feedback consensus problem of high-order multi-agent systems with nonlinear uncertainties is researched by the robust control method. By the dimensional extension of the observation matrix, the consensus control problem is transformed into a stability problem. Then the robust controller is designed by combining the nominal controller and the robust compensator. The nominal controller can obtain desired nominal performance based on the output informations. The robust compensator, which relys on robust signal compensation technology, is order to suppress the nonlinear uncertainties. According to the proposed method, output consensus error can be guaranteed as small as desired. Finally, simulation results are given to illustrate the effectiveness of this control method.  相似文献   

6.
研究一类随机系统具有期望的动态误差系数、稳态输出方差和相对稳定裕度约束的满意PID控制问题.首先应用满意控制思想,给出期望指标集的相容性定义;然后分别推导出PID控制器满足期望的稳定裕度指标的参数域边界解析式、满足期望的动态误差系数指标和期望的稳态输出方差指标的参数解集的解析式;最后给出期望指标的相容性判别方法以及相容性解集求取策略.通过算例验证了所提出方法的有效性.  相似文献   

7.
基于观测器的一类非线性系统的自适应模糊控制   总被引:1,自引:1,他引:0  
针对一类有界的不确定非线性系统设计了模糊观测器和自适应控制器.该方法不需要系统状态完全可测的条件,而是通过模糊观测器估计系统的状态变量并且能保证观测误差是一致最终有界的.该自适应控制器取得了良好的控制效果并且保证了跟踪误差的一致最终有界性.仿真结果表明了本文所提出的方法有效性.  相似文献   

8.
PID控制器在实际工程中应用广泛,而且工程上对随动系统的性能要求往往是多方面的.该文应用满意控制思想,研究了期望指标:扇形区域极点,稳态输出方差和动态误差系数约束下随动系统的PID控制设计问题.首先将PID控制参数设计转化为局部状态反馈问题,导出了3项指标约束的双线性矩阵不等式(BMI)描述.然后给出改进的迭代线性矩阵不等式(LMI)算法求解BMI可行解,得到使闭环系统满足3项期望指标的PID参数.最后给出了应用该方法数值算例.  相似文献   

9.
This work investigates the problem of robust output feedback H/sub /spl infin// control for a class of uncertain discrete-time fuzzy systems with time delays. The state-space Takagi-Sugeno fuzzy model with time delays and norm-bounded parameter uncertainties is adopted. The purpose is the design of a full-order fuzzy dynamic output feedback controller which ensures the robust asymptotic stability of the closed-loop system and guarantees an H/sub /spl infin// norm bound constraint on disturbance attenuation for all admissible uncertainties. In terms of linear matrix inequalities (LMIs), a sufficient condition for the solvability of this problem is presented. Explicit expressions of a desired output feedback controller are proposed when the given LMIs are feasible. The effectiveness and the applicability of the proposed design approach are demonstrated by applying this to the problem of robust H/sub /spl infin// control for a class of uncertain nonlinear discrete delay systems.  相似文献   

10.
A systematic approach to design a nonlinear controller using minimax linear quadratic Gaussian regulator (LQG) control is proposed for a class of multi‐input multi‐output nonlinear uncertain systems. In this approach, a robust feedback linearization method and a notion of uncertain diffeomorphism are used to obtain an uncertain linearized model for the corresponding uncertain nonlinear system. A robust minimax LQG controller is then proposed for reference command tracking and stabilization of the nonlinear system in the presence of uncertain parameters. The uncertainties are assumed to satisfy a certain integral quadratic constraint condition. In this method, conventional feedback linearization is used to cancel nominal nonlinear terms and the uncertain nonlinear terms are linearized in a robust way. To demonstrate the effectiveness of the proposed approach, a minimax LQG‐based robust controller is designed for a nonlinear uncertain model of an air‐breathing hypersonic flight vehicle (AHFV) with flexibility and input coupling. Here, the problem of constructing a guaranteed cost controller which minimizes a guaranteed cost bound has been considered and the tracking of velocity and altitude is achieved under inertial and aerodynamic uncertainties.  相似文献   

11.
一类非线性时变系统的鲁棒输出跟踪控制   总被引:2,自引:0,他引:2  
研究一类具有非匹配不确定性的非线性时变系统的鲁棒状态反馈输出跟踪控制器设计问题。通过引入非线性时变系统的相对阶将系统输入输出线性化,然后设计出一种基于标称系统和不确定性上界的连接型鲁棒输出跟踪控制器,利用该方案设计的控制器可保证整个闭环系统是一致有界稳定的,且闭环输出可以渐近跟踪期望的轨迹。  相似文献   

12.
This article investigates the robust adaptive control system design for the longitudinal dynamics of a flexible air‐breathing hypersonic vehicle (FAHV) subject to parametric uncertainties and control input constraints. A combination of back‐stepping and nonlinear disturbance observer (NDO) is utilized for exploiting an adaptive output‐feedback controller to provide robust tracking of velocity and altitude reference trajectories in the presence of flexible effects and system uncertainties. The dynamic surface control is introduced to solve the problem of “explosion of terms.” A new NDO is developed to guarantee the proposed controller's disturbance attenuation ability and to performance robustness against uncertain aerodynamic coefficients. To deal with the problem of actuator saturation, a novel auxiliary system is exploited to compensate the desired control laws. The stability of the presented NDO and controller is analyzed. Simulation results are given to demonstrate the effectiveness of the presented control strategy.  相似文献   

13.
In this paper, an adaptive full order sliding mode (FOSM) controller is proposed for strict feedback nonlinear systems with mismatched uncertainties. The design objective of the controller is to track a specified trajectory in presence of significant mismatched uncertainties. In the first step the dynamic model for the first state is considered by the desired tracking signal. After the first step the desired dynamic model for each state is defined by the previous one. An adaptive tuning law is developed for the FOSM controller to deal with the bounded system uncertainty. The major advantages offered by this adaptive FOSM controller are that advanced knowledge about the upper bound of the system uncertainties is not a necessary requirement and the proposed method is an effective solution for the chattering elimination from the control signal. The controller is designed considering the full-order sliding surface. System robustness and the stability of the controller are proved by using the Lyapunov technique. A systematic adaptive step by step design method using the full order sliding surface for mismatched nonlinear systems is presented. Simulation results validate the effectiveness of the proposed control law.  相似文献   

14.
This paper considers robust performance analysis and H X controller design for a class of systems with time-varying and nonlinear uncertainties. These uncertainties are allowed to exist not only in the state, but also in the control input, measurement output, exogenous input and derivative of state. A new sufficient condition based on LMI is first provided to analyse the robust H X performance problem of the free systems. For the general case, it is shown that a solvability condition for the output feedback control problem can be reduced to that of a set of LMIs with algebraic constraints. Then it is shown that in some cases, the constraints can be eliminated through simplifications and the output feedback controller design methods can be provided in terms of LMIs. In particular, two special cases of the systems with nonlinear uncertainties are discussed thoroughly and the design procedures of output feedback controllers are provided via typical LMIs. Furthermore, for a class of systems with both structured and nonlinear uncertainties, a new solvability condition is presented and the corresponding problem also cast into that of an auxiliary system without uncertainties. A few examples are also given to demonstrate the effectiveness of the proposed approaches.  相似文献   

15.
This paper considers the design of a nonlinear observer‐based output‐feedback controller for oil‐field drill‐string systems aiming to eliminate (torsional) stick–slip oscillations. Such vibrations decrease the performance and reliability of drilling systems and can ultimately lead to system failure. Current industrial controllers regularly fail to eliminate stick–slip vibrations under increasingly challenging operating conditions caused by the tendency towards drilling deeper and inclined wells, where multiple vibrational modes play a role in the occurrence of stick–slip vibrations. As a basis for controller synthesis, a multi‐modal model of the torsional drill‐string dynamics for a real rig is employed, and a bit–rock interaction model with severe velocity‐weakening effect is used. The proposed model‐based controller design methodology consists of a state‐feedback controller and a (nonlinear) observer. Conditions, guaranteeing asymptotic stability of the desired equilibrium, corresponding to nominal drilling operation, are presented. The proposed control strategy has a significant advantage over existing vibration control systems as it can effectively cope with multiple modes of torsional vibration. Case study results using the proposed control strategy show that stick–slip oscillations can indeed be eliminated in realistic drilling scenarios in which industrial controllers fail to do so. Moreover, key robustness aspects of the control system involving the robustness against uncertainties in the bit–rock interaction and changing operational conditions are evidenced. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

16.
In this paper, a discontinuous projection‐based adaptive robust control (ARC) scheme is constructed for a class of nonlinear systems in an extended semi‐strict feedback form by incorporating a nonlinear observer and a dynamic normalization signal. The form allows for parametric uncertainties, uncertain nonlinearities, and dynamic uncertainties. The unmeasured states associated with the dynamic uncertainties are assumed to enter the system equations in an affine fashion. A novel nonlinear observer is first constructed to estimate the unmeasured states for a less conservative design. Estimation errors of dynamic uncertainties, as well as other model uncertainties, are dealt with effectively via certain robust feedback control terms for a guaranteed robust performance. In contrast with existing conservative robust adaptive control schemes, the proposed ARC method makes full use of the available structural information on the unmeasured state dynamics and the prior knowledge on the bounds of parameter variations for high performance. The resulting ARC controller achieves a prescribed output tracking transient performance and final tracking accuracy in the sense that the upper bound on the absolute value of the output tracking error over entire time‐history is given and related to certain controller design parameters in a known form. Furthermore, in the absence of uncertain nonlinearities, asymptotic output tracking is also achieved. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

17.
The problem of global asymptotic tracking by output feedback is studied for a class of nonminimum‐phase nonlinear systems in output feedback form. It is proved that the problem is solvable by an n‐dimensional output feedback controller under the two conditions: (a) the nonminimum‐phase nonlinear system can be rendered minimum‐phase by a virtual output; and (b) the internal dynamics of the nonlinear system driven by a desired signal and its derivatives has a bounded solution trajectory. With the help of a new coordinate transformation, a constructive method is presented for the design of a dynamic output tracking controller. An example is given to validate the proposed output feedback tracking control scheme.  相似文献   

18.
This paper is concerned with the problem of non-fragile positive real control for uncertain neutral delay systems with time-invariant norm-bounded parameter uncertainty. Time delays are assumed to appear in both the state and the controlled output equations. The state feedback gains are with norm-bounded controller uncertainties. For both the cases with additive and multiplicative controller uncertainties, we address the problem of designing memoryless state feedback controllers such that, for all admissible uncertainties, the resulting closed-loop system is stable and the closed-loop transfer function is extended strictly positive real. Sufficient conditions for the existence of desired controllers are given in terms of linear matrix inequalities (LMIs). When these LMIs are feasible, the expected memoryless state feedback controller can be easily constructed via convex optimization. An illustrative example is given to demonstrate the validity and applicability of the proposed approach.  相似文献   

19.
This paper addresses the output feedback tracking control of a class of multiple‐input and multiple‐output nonlinear systems subject to time‐varying input delay and additive bounded disturbances. Based on the backstepping design approach, an output feedback robust controller is proposed by integrating an extended state observer and a novel robust controller, which uses a desired trajectory‐based feedforward term to achieve an improved model compensation and a robust delay compensation feedback term based on the finite integral of the past control values to compensate for the time‐varying input delay. The extended state observer can simultaneously estimate the unmeasurable system states and the additive disturbances only with the output measurement and delayed control input. The proposed controller theoretically guarantees prescribed transient performance and steady‐state tracking accuracy in spite of the presence of time‐varying input delay and additive bounded disturbances based on Lyapunov stability analysis by using a Lyapunov‐Krasovskii functional. A specific study on a 2‐link robot manipulator is performed; based on the system model and the proposed design procedure, a suitable controller is developed, and comparative simulation results are obtained to demonstrate the effectiveness of the developed control scheme.  相似文献   

20.
In this paper, two suboptimal event‐triggered control techniques are proposed for both the regulation and the tracking problems in a broad class of nonlinear networked control systems. The proposed techniques are based on the state‐dependent Riccati equation (SDRE) methodology. In the case of the regulation problem, the asymptotic stability of the origin of the closed‐loop system under the proposed event‐triggered control law is investigated. In addition, for the tracking problem, it is proved that the tracking error between the system output and its desired trajectory converges asymptotically to zero under some mild conditions. It is shown that the proposed methods can considerably reduce the information exchange between the controller and the actuator. Due to the implementation procedures of the proposed techniques, no Zeno behavior is occurred. Three numerical simulations are provided to demonstrate the design procedure and the flexibility of the proposed event‐triggered control techniques.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号