首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
All‐inorganic cesium lead halide perovskite nanocrystals (NCs) have demonstrated excellent optical properties and an encouraging potential for optoelectronic applications; however, mixed‐halide perovskites, especially CsPb(Cl/Br)3 NCs, still show lower photoluminescence quantum yields (PL QY) than the corresponding single‐halide materials. Herein, anhydrous oxalic acid is used to post‐treat CsPb(Cl/Br)3 NCs in order to initially remove surface defects and halide vacancies, and thus, to improve their PL QY from 11% to 89% for the emission of 451 nm. Furthermore, due to the continuous chelating reaction with the oxalate ion, chloride anions from the mixed‐halide CsPb(Cl/Br)3 perovskite NCs could be extracted, and green emitting CsPbBr3 NCs with PL QY of 85% at 511 nm emission are obtained. Besides being useful to improve the emission of CsPb(Cl/Br)3 NCs, the oxalic acid treatment strategy introduced here provides a further tool to adjust the distribution of halide anions in mixed‐halide perovskites without using any halide additives.  相似文献   

2.
Lead halide perovskites are promising materials for a range of applications owing to their unique crystal structure and optoelectronic properties. Understanding the relationship between the atomic/mesostructures and the associated properties of perovskite materials is crucial to their application performances. Herein, the detailed pressure processing of CsPbBr3 perovskite nanocube superlattices (NC‐SLs) is reported for the first time. By using in situ synchrotron‐based small/wide angle X‐ray scattering and photoluminescence (PL) probes, the NC‐SL structural transformations are correlated at both atomic and mesoscale levels with the band‐gap evolution through a pressure cycle of 0 ? 17.5 GPa. After the pressurization, the individual CsPbBr3 NCs fuse into 2D nanoplatelets (NPLs) with a uniform thickness. The pressure‐synthesized perovskite NPLs exhibit a single cubic crystal structure, a 1.6‐fold enhanced photoluminescence quantum yield, and a longer emission lifetime than the starting NCs. This study demonstrates that pressure processing can serve as a novel approach for the rapid conversion of lead halide perovskites into structures with enhanced properties.  相似文献   

3.
All‐inorganic perovskite CsPbX3 (X = Cl, Br, I) and related materials are promising candidates for potential solar cells, light emitting diodes, and photodetectors. Here, a novel architecture made of CsPbX3/ZnS quantum dot heterodimers synthesized via a facile solution‐phase process is reported. Microscopic measurements show that CsPbX3/ZnS heterodimer has high crystalline quality with enhanced chemical stability, as also evidenced by systematic density functional theory based first‐principles calculations. Remarkably, depending on the interface structure, ZnS induces either n‐type or p‐type doping in CsPbX3 and both type‐I and type‐II heterojunctions can be achieved, leading to rich electronic properties. Photoluminescence measurement results show a strong blue‐shift and decrease of recombination lifetime with increasing sulfurization, which is beneficial for charge diffusion in solar cells and photovoltaic applications. These findings are expected to shed light on further understanding and design of novel perovskite heterostructures for stable, tunable optoelectronic devices.  相似文献   

4.
Lead‐(Pb‐) halide perovskite nanocrystals (NCs) are interesting nanomaterials due to their excellent optical properties, such as narrow‐band emission, high photoluminescence (PL) efficiency, and wide color gamut. However, these NCs have several critical problems, such as the high toxicity of Pb, its tendency to accumulate in the human body, and phase instability. Although Pb‐free metal (Bi, Sn, etc.) halide perovskite NCs have recently been reported as possible alternatives, they exhibit poor optical and electrical properties as well as abundant intrinsic defect sites. For the first time, the synthesis and optical characterization of cesium ytterbium triiodide (CsYbI3) cubic perovskite NCs with highly uniform size distribution and high crystallinity using a simple hot‐injection method are reported. Strong excitation‐independent emission and high quantum yields for the prepared NCs are verified using photoluminescence measurements. Furthermore, these CsYbI3 NCs exhibit potential for use in organic–inorganic hybrid photodetectors as a photoactive layer. The as‐prepared samples exhibit clear on–off switching behavior as well as high photoresponsivity (2.4 × 103 A W?1) and external quantum efficiency (EQE, 5.8 × 105%) due to effective exciton dissociation and charge transport. These results suggest that CsYbI3 NCs offer tremendous opportunities in electronic and optoelectronic applications, such as chemical sensors, light emitting diodes (LEDs), and energy conversion and storage devices.  相似文献   

5.
All‐inorganic cesium lead halide perovskite nanocrystals (NCs) have emerged as attractive optoelectronic materials due to the excellent optical and electronic properties. However, their environmental stability, especially in the presence of water, is still a significant challenge for their further commercialization. Here, ultrahigh intrinsically water‐stable all‐inorganic quasi‐2D CsPbBr3 nanosheets (NSs) via aqueous phase exfoliation method are reported. Compared to conventional perovskite NCs, these unique quasi‐2D CsPbBr3 nanosheets present an outstanding long‐term water stability with 87% photoluminescence (PL) intensity remaining after 168 h under water conditions. Moreover, the photoluminescence quantum yields (PLQY) of quasi‐2D CsPbBr3 NSs is up to 82.3%, and these quasi‐2D CsPbBr3 NSs also present good photostability of keeping 85% PL intensity after 2 h under 365 nm UV light. Evidently, such quasi‐2D perovskite NSs will open up a new way to investigate the intrinsic stability of all‐inorganic perovskites and further promote the commercial development of perovskite‐based optoelectronic and photovoltaic devices.  相似文献   

6.
Lead halide perovskites have emerged as promising semiconducting materials for different applications owing to their superior optoelectronic properties. Although the community holds different views toward the toxic lead in these high‐performance perovskites, it is certainly preferred to replace lead with nontoxic, or at least less‐toxic, elements while maintaining the superior properties. Here, the design rules for lead‐free perovskite materials with structural dimensions from 3D to 0D are presented. Recent progress in lead‐free halide perovskites is reviewed, and the relationships between the structures and fundamental properties are summarized, including optical, electric, and magnetic‐related properties. 3D perovskites, especially A2B+B3+X6‐type double perovskites, demonstrate very promising optoelectronic prospects, while low‐dimensional perovskites show rich structural diversity, resulting in abundant properties for optical, electric, magnetic, and multifunctional applications. Furthermore, based on these structure–property relationships, strategies for multifunctional perovskite design are proposed. The challenges and future directions of lead‐free perovskite applications are also highlighted, with emphasis on materials development and device fabrication. The research on lead‐free halide perovskites at Linköping University has benefited from inspirational discussions with Prof. Olle Inganäs.  相似文献   

7.
Inorganic CsPbX3 (X = Cl, Br, I, or hybrid among them) perovskite quantum dots (IPQDs) are promising building blocks for exploring high performance optoelectronic applications. In this work, the authors report a new hybrid structure that marries CsPbX3 IPQDs to silicon nanowires (SiNWs) radial junction structures to achieve ultrafast and highly sensitive ultraviolet (UV) detection in solar‐blind spectrum. A compact and uniform deployment of CsPbX3 IPQDs upon the sidewall of low‐reflective 3D radial junctions enables a strong light field excitation and efficient down‐conversion of the ultraviolet incidences, which are directly tailored into emission bands optimized for a rapid photodetection in surrounding ultrathin radial p‐i‐n junctions. A fast solar‐blind UV detection has been demonstrated in this hybrid IPQD‐NW detectors, with rise/fall response time scales of 0.48/1.03 ms and a high responsivity of 54 mA W?1@200 nm (or 32 mA W?1@270 nm), without the need of any external power supply. These results pave the way toward large area manufacturing of high performance Si‐based perovskite UV detectors in a scalable and low‐cost procedure.  相似文献   

8.
Cesium lead halide perovskites are of interest for light‐emitting diodes and lasers. So far, thin‐films of CsPbX3 have typically afforded very low photoluminescence quantum yields (PL‐QY < 20%) and amplified spontaneous emission (ASE) only at cryogenic temperatures, as defect related nonradiative recombination dominated at room temperature (RT). There is a current belief that, for efficient light emission from lead halide perovskites at RT, the charge carriers/excitons need to be confined on the nanometer scale, like in CsPbX3 nanoparticles (NPs). Here, thin films of cesium lead bromide, which show a high PL‐QY of 68% and low‐threshold ASE at RT, are presented. As‐deposited layers are recrystallized by thermal imprint, which results in continuous films (100% coverage of the substrate), composed of large crystals with micrometer lateral extension. Using these layers, the first cesium lead bromide thin‐film distributed feedback and vertical cavity surface emitting lasers with ultralow threshold at RT that do not rely on the use of NPs are demonstrated. It is foreseen that these results will have a broader impact beyond perovskite lasers and will advise a revision of the paradigm that efficient light emission from CsPbX3 perovskites can only be achieved with NPs.  相似文献   

9.
Compared with organic–inorganic hybrid halide perovskites (OIHPs), inorganic cesium lead halide perovskites (CsPbX3) possess superior intrinsic stability for high temperatures and are considered one of the most attractive research hotspots in the perovskite photovoltaic (PV) field in the past several years. The PCE of CsPbX3 inorganic perovskite solar cells (IPSCs) has increased from 2.9% in 2015 to more than 20% with excellent stability. There are still many on-going studies on the properties of perovskite materials and their applications in PV technology, thereby needing a thorough understanding. Here, the progress of inorganic perovskites is systematically introduced, including the fundamental properties of CsPbX3 materials and CsPbX3-based PV devices. The origins of stability and instability of CsPbX3 and defects in CsPbX3 are discussed. CsPbI3-, CsPbI2Br-, CsPbIBr2- and CsPbBr3-based PV devices and performance are comprehensively reviewed. The stabilization methods and mechanism for the photoactive phases of inorganic perovskites with low bandgap are emphasized. Reported strategies to boost the performance of CsPbX3-based IPSCs are summarized. In the end, the potential of inorganic perovskites is evaluated, which opens up new prospects for the commercialization of IPSCs.  相似文献   

10.
All‐inorganic cesium lead halide perovskite nanocrystals (NCs) with different dimensionalities have recently fascinated the research community due to their extraordinary optoelectronic performance such as tunable bandgaps over the entire visible spectral region. However, compared to well‐developed 3D CsPbX3 perovskites (X = Cl, Br, and I), the bandgap tuning in 0D Cs4PbX6 perovskite NCs remains an arduous task. Herein, a simple but valid strategy is proposed to tailor the insulator bandgap (≈3.96 eV) of Cs4PbBr6 NCs to the blue spectral region by changing the local coordination environment of isolated [PbBr6]4? octahedra in the Cs4PbBr6 crystal through Sn cation doping. Benefitting from the unique Pb2+‐poor and Br?‐rich reaction environment, the Sn cation is successfully introduced into the Cs4PbBr6 NCs, forming coexisting point defects comprising substitutional SnPb and interstitial Bri, thereby endowing these theoretically nonluminescent Cs4PbBr6 NCs with an ultranarrow blue emission at ≈437 nm (full width at half maximum, ≈12 nm). By combining the experimental results with first‐principles calculations, an unusual electronic dual‐bandgap structure, comprising the newly emerged semiconducting bandgap of ≈2.87 eV and original insulator bandgap of ≈3.96 eV, is found to be the underlying fundamental reason for the ultranarrow blue emission.  相似文献   

11.
Mixed‐halide lead perovskites have attracted significant attention in the field of photovoltaics and other optoelectronic applications due to their promising bandgap tunability and device performance. Here, the changes in photoluminescence and photoconductance of solution‐processed triple‐cation mixed‐halide (Cs0.06MA0.15FA0.79)Pb(Br0.4I0.6)3 perovskite films (MA: methylammonium, FA: formamidinium) are studied under solar‐equivalent illumination. It is found that the illumination leads to localized surface sites of iodide‐rich perovskite intermixed with passivating PbI2 material. Time‐ and spectrally resolved photoluminescence measurements reveal that photoexcited charges efficiently transfer to the passivated iodide‐rich perovskite surface layer, leading to high local carrier densities on these sites. The carriers on this surface layer therefore recombine with a high radiative efficiency, with the photoluminescence quantum efficiency of the film under solar excitation densities increasing from 3% to over 45%. At higher excitation densities, nonradiative Auger recombination starts to dominate due to the extremely high concentration of charges on the surface layer. This work reveals new insight into phase segregation of mixed‐halide mixed‐cation perovskites, as well as routes to highly luminescent films by controlling charge density and transfer in novel device structures.  相似文献   

12.
All‐inorganic semiconductor perovskite quantum dots (QDs) with outstanding optoelectronic properties have already been extensively investigated and implemented in various applications. However, great challenges exist for the fabrication of nanodevices including toxicity, fast anion‐exchange reactions, and unsatisfactory stability. Here, the ultrathin, core–shell structured SiO2 coated Mn2+ doped CsPbX3 (X = Br, Cl) QDs are prepared via one facile reverse microemulsion method at room temperature. By incorporation of a multibranched capping ligand of trioctylphosphine oxide, it is found that the breakage of the CsPbMnX3 core QDs contributed from the hydrolysis of silane could be effectively blocked. The thickness of silica shell can be well‐controlled within 2 nm, which gives the CsPbMnX3@SiO2 QDs a high quantum yield of 50.5% and improves thermostability and water resistance. Moreover, the mixture of CsPbBr3 QDs with green emission and CsPbMnX3@SiO2 QDs with yellow emission presents no ion exchange effect and provides white light emission. As a result, a white light‐emitting diode (LED) is successfully prepared by the combination of a blue on‐chip LED device and the above perovskite mixture. The as‐prepared white LED displays a high luminous efficiency of 68.4 lm W?1 and a high color‐rendering index of Ra = 91, demonstrating their broad future applications in solid‐state lighting fields.  相似文献   

13.
The quest for novel semiconductors with easy, cheap fabrication and tailorable properties has led to the development of several classes of materials, such as semiconducting polymers, carbon nanotubes, hybrid perovskites, and colloidal quantum dots. All these candidates can be processed from the liquid phase, enabling easy fabrication, and are suitable for different electronic and optoelectronic applications. Here, recent developments in the field of colloidal‐quantum‐dot solids are discussed, with a focus on lead‐chalcogenide systems. These include novel deposition methods; the recent growing understanding of their fundamental properties, driven by major successes in the control of the nanostructured assembly and surface chemistry; and selected reports on lab‐scale devices showing the technological prospects of these fascinating class of materials.  相似文献   

14.
Halide perovskite (CsPbX3, X = Cl, Br, or I) quantum dots have received increasing attention as novel colloidal nanocrystals (NCs). Accurate control of emission bands and NC morphologies are vital prerequisites for most CsPbX3 NC practical applications. Therefore, a facile method of synthesizing CsPbX3 (X = Cl, Br, or I) NCs in the nonpolar solvent octane was developed. The process was conducted in air at ~ 90 °C to synthesize high-quality CsPbX3 NCs showing 12–44 nm wide emission and high photoluminescence quantum yield, exceeding 90%. An in situ anion-exchange method was developed to tune CsPbX3 NC photoluminescence emission, using PbX2 dissolved in octane as the halide source. NC morphology was controlled by dissolving specific metal–organic salts in the precursor solution prior to nucleation, and nanocubes, nanodots, nanosheets, nanoplatelets, nanorods, and nanowires were obtained following the same general method providing a facile, versatile route to controlling CsPbX3 NC emission bands and morphologies, which will broaden the range of CsPbX3 NC practical applications.
  相似文献   

15.
Lead halide perovskites (LHPs) have received increased attention owing to their intriguing optoelectronic and photonic properties. However, the toxicity of lead and the lack of long‐term stability are potential obstacles for the application of LHPs. Herein, the epitaxial synthesis of CsPbX3 (X = Cl, Br, I) perovskite quantum dots (QDs) by surface chemical conversion of Cs2GeF6 double perovskites with PbX2 (X = Cl, Br, I) is reported. The experimental results show that the surface of the Cs2GeF6 double perovskites is partially converted into CsPbX3 perovskite QDs and forms a CsPbX3/Cs2GeF6 hybrid structure. The theoretical calculations reveal that the CsPbBr3 conversion proceeds at the Cs2GeF6 edge through sequential growth of multiple PbBr6 4? layers. Through the conversion strategy, luminescent and color‐tunable CsPbX3 QDs can be obtained, and these products present high stability against decomposition due to anchoring effects. Moreover, by partially converting red emissive Cs2GeF6:Mn4+ to green emissive CsPbBr3, the CsPbBr3/Cs2GeF6:Mn4+ hybrid can be employed as a low‐lead hybrid perovskite phosphor on blue LED chips to produce white light. The leadless CsPbX3/Cs2GeF6 hybrid structure with stable photoluminescence opens new paths for the rational design of efficient emission phosphors and may stimulate the design of other functional CsPbX3/Cs‐containing hybrid structures.  相似文献   

16.
0D lead‐free metal halide nanocrystals (NCs) are an emerging class of materials with intriguing optical properties. Herein, colloidal synthetic routes are presented for the production of 0D Cs3Cu2X5 (X = I, Br, and Cl) NCs with orthorhombic structure and well‐defined morphologies. All these Cs3Cu2X5 NCs exhibit broadband blue‐green photoluminescence (PL) emissions in the range of 445–527 nm with large Stokes shifts, which are attributed to their intrinsic self‐trapped exciton (STE) emission characteristics. The high PL quantum yield of 48.7% is obtained from Cs3Cu2Cl5 NCs, while Cs3Cu2I5 NCs exhibit considerable air stability over 45 days. Intriguingly, as X is changed from I to Br and Cl, Cs3Cu2X5 NCs exhibit a continuous redshift of emission peaks, which is contrary to the blueshift in CsPbX3 perovskite NCs.  相似文献   

17.
Following the rejuvenation of 3D organic–inorganic hybrid perovskites, like CH3NH3PbI3, (quasi)‐2D Ruddlesden–Popper soft halide perovskites R2An?1PbnX3n+1 have recently become another focus in the optoelectronic and photovoltaic device community. Although quasi‐2D perovskites were first introduced to stabilize optoelectronic/photovoltaic devices against moisture, more interesting properties and device applications, such as solar cells, light‐emitting diodes, white‐light emitters, lasers, and polaritonic emission, have followed. While delicate engineering design has pushed the performance of various devices forward remarkably, understanding of the fundamental properties, especially the charge‐transfer process, electron–phonon interactions, and the growth mechanism in (quasi)‐2D halide perovskites, remains limited and even controversial. Here, after reviewing the current understanding and the nexus between optoelectronic/photovoltaic properties of 2D and 3D halide perovskites, the growth mechanisms, charge‐transfer processes, vibrational properties, and electron–phonon interactions of soft halide perovskites, mainly in quasi‐2D systems, are discussed. It is suggested that single‐crystal‐based studies are needed to deepen the understanding of the aforementioned fundamental properties, and will eventually contribute to device performance.  相似文献   

18.
3D perovskites with typical structure of ABX3 are emerging as key materials to achieve high‐performance optoelectronic devices. The variation of A‐site cation is promising to achieve enhanced properties; however, is limited to a few available choices of methylamine, formamidine, and cesium. In this work, halogenated‐methylammoniums are developed as A cation to broaden the family of hybrid perovskites. Single crystals and colloidal nanocrystals of halogenated‐methylammoniums based perovskites are successfully synthesized, showing bright future as alternatives for device exploration. In particular, the improved thermal stability and low exciton binding energy from single crystals measurements are demonstrated and bright tunable emission from blue to green for colloidal nanocrystals is achieved.  相似文献   

19.
Metal-halide perovskites are novel optoelectronic materials that are considered good candidates for solar harvesting and light emitting applications. In this study, we develop a reproducible and low-cost approach for synthesizing highquality cesium lead halide perovskite (CsPbX3, X = Cl, Br, and I or Cl/Br and I/Br) nanocrystals (NCs) by direct heating of precursors in octadecene in air. Experimental results show that the particle size and composition of as-prepared CsPbX3 nanocrystals can be successfully tuned by a simple variation of reaction temperature. The emission peak positions of the as-prepared nanocrystals can be conveniently tuned from the UV to the NIR (360–700 nm) region, and the quantum yield of the as-obtained samples (green and red emissions) can reach up to 87%. The structures and chemical compositions of the as-obtained NCs were characterized by transmission electron microscopy, X-ray diffraction, and elemental analysis. This proposed synthetic route can yield large amounts of high-quality NCs with a one-batch reaction, usually on the gram scale, and could pave the way for further applications of perovskite-based light-emitting and photovoltaic solar cells.
  相似文献   

20.
Metal halide perovskites represent a family of the most promising materials for fascinating photovoltaic and photodetector applications due to their unique optoelectronic properties and much needed simple and low‐cost fabrication process. The high atomic number (Z) of their constituents and significantly higher carrier mobility also make perovskite semiconductors suitable for the detection of ionizing radiation. By taking advantage of that, the direct detection of soft‐X‐ray‐induced photocurrent is demonstrated in both rigid and flexible detectors based on all‐inorganic halide perovskite quantum dots (QDs) synthesized via a solution process. Utilizing a synchrotron soft‐X‐ray beamline, high sensitivities of up to 1450 µC Gyair?1 cm?2 are achieved under an X‐ray dose rate of 0.0172 mGyair s?1 with only 0.1 V bias voltage, which is about 70‐fold more sensitive than conventional α‐Se devices. Furthermore, the perovskite film is printed homogeneously on various substrates by the inexpensive inkjet printing method to demonstrate large‐scale fabrication of arrays of multichannel detectors. These results suggest that the perovskite QDs are ideal candidates for the detection of soft X‐rays and for large‐area flat or flexible panels with tremendous application potential in multidimensional and different architectures imaging technologies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号