首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This paper considers the problem of delay‐dependent adaptive reliable H controller design against actuator faults for linear time‐varying delay systems. Based on the online estimation of eventual faults, the parameters of adaptive reliable H controller are updating automatically to compensate the fault effects on the system. A new delay‐dependent reliable H controller is established using a linear matrix inequality technique and an adaptive method, which guarantees the stability and adaptive H performance of closed‐loop systems in normal and faulty cases. A numerical example and its simulation results illustrate the effectiveness of the proposed method. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

2.
This paper is concerned with the problem of H output tracking control for networked control systems (NCSs) with network‐induced delay and packet disordering. Different from the results in existing literature, the controller design in this paper is both delay‐ and packet‐disordering‐dependent. Based on the different cases of consecutive predictions, the networked output tracking system is modeled into a switched system. Moreover, by the corresponding switching‐based Lyapunov functional approach, a linear matrix inequality (LMI)‐based procedure is proposed for designing state‐feedback controllers, which guarantees that the output of the closed‐loop NCSs tracks the output of a given reference model well in the H sense. In addition, the proposed method can be applied variously due to all kinds of prediction numbers of the consecutive disordering packet have been considered, and the designed controller is based on the prediction case in the last transmission interval, which brings about less conservatism. Finally numerical examples and simulations are used to illustrate the effectiveness and validity of the proposed switching‐based method and the delay‐ and packet‐disordering‐dependent H output tracking controller design.  相似文献   

3.
4.
A novel type of control scheme combined the distance‐observer‐based control (DOBC) with H control is proposed for a class of nonlinear time‐delay systems subject to disturbances. The disturbances are supposed to include two parts. One in the input channel is generated by an exogenous system with uncertainty, which can represent the harmonic signals with modeling perturbations. The other is supposed to have the bounded H2 norm. The disturbance observers based on regional pole placement and D‐stability theory are presented, which can be designed separately from the controller design. By integrating disturbance‐observer‐based control with H control laws, the disturbances can be rejected and attenuated, simultaneously, the desired dynamic performances can be guaranteed for nonlinear time‐delay systems with unknown nonlinear dynamics. Copyright © 2009 John Wiley and Sons Asia Pte Ltd and Chinese Automatic Control Society  相似文献   

5.
This paper deals with delay‐dependent H control for discrete‐time systems with time‐varying delay. A new finite sum inequality is first established to derive a delay‐dependent condition, under which the resulting closed‐loop system via a state feedback is asymptotically stable with a prescribed H noise attenuation level. Then, an iterative algorithm involving convex optimization is proposed to obtain a suboptimal H controller. Finally, two numerical examples are given to show the effectiveness of the proposed method. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

6.
This paper is concerned with the H control problem for networked control systems (NCSs) with random packet dropouts. The NCS is modeled as a sampled‐data system which involves a continuous plant, a digital controller, an event‐driven holder and network channels. In this model, two types of packet dropouts in the sensor‐to‐controller (S/C) side and controller‐to‐actuator (C/A) side are both considered, and are described by two mutually independent stochastic variables satisfying the Bernoulli binary distribution. By applying an input/output delay approach, the sampled‐data NCS is transformed into a continuous time‐delay system with stochastic parameters. An observer‐based control scheme is designed such that the closed‐loop NCS is stochastically exponentially mean‐square stable and the prescribed H disturbance attenuation level is also achieved. The controller design problem is transformed into a feasibility problem for a set of linear matrix inequalities (LMIs). A numerical example is given to illustrate the effectiveness of the proposed design method. Copyright © 2010 John Wiley and Sons Asia Pte Ltd and Chinese Automatic Control Society  相似文献   

7.
In this article, the event‐triggered robust H control is studied for a class of uncertain networked control systems (NCSs) subject to unknown state and variable disturbance. First, aiming to decrease the unnecessary transmissions of sampled data, an efficient adaptive event‐triggered scheme (AETS) is presented, which can reflect the full real‐time variation of addressed NCSs and help to reduce the conservativeness. Second, based on the triggered output signals and disturbance model, two effective observers are, respectively, exploited to estimate the state and disturbance, which are further utilized to reject the disturbance and design the controller. By using the overall closed‐loop system and selecting an augmented Lyapunov‐Krasovskii functional, two sufficient conditions on jointly designing the adaptive event scheme, observers, and controller are established via linear matrix inequality forms, which can guarantee the global exponential stability and ensure H performance. Finally, some simulations and comparisons in a numerical example are provided to demonstrate the effectiveness of the derived results.  相似文献   

8.
This paper addresses the problem of designing an Hfuzzy state‐ feedback (SF) plus state‐derivative‐feedback (SDF) control system for photovoltaic (PV) systems based on a linear matrix inequality (LMI) approach. The TS fuzzy controller is designed on the basis of the Takagi‐Sugeno (TS) fuzzy model. The sufficient condition is found such that the system with the fuzzy controller is asymptotically stable and an Hperformance is satisfied. First, a dc/dc buck converter is considered to regulate the power output by controlling state and state‐derivative variables of PV systems. The dynamic model of PV systems is approximated by the TS fuzzy model in the form of nonlinear systems. Then, based on a well‐known Lyapunov functional approach, the synthetic is formulated of an Hfuzzy SF plus SDF control law, which guarantees the L2‐gain from an exogenous input to the regulated output to be less than or equal to some prescribed value. Finally, to show effectiveness, the simulation of the PV systems with the proposed control is assessed by the computer programme. The proposed control method shows good performance for power output and high stability for the PV system.  相似文献   

9.
The problem of H control for networked Markovian jump system under event‐triggered scheme is studied in this paper. In order to reduce the utilization of limited network bandwidth, a dynamic discrete event‐triggered scheme to choose the transmitted data is designed. A Markovian jump time‐delay system model is employed to describe the event‐triggered scheme and the network related behavior, such as transmission delay, data package dropout, and disorder. Furthermore, a sufficient condition is derived to guarantee that the resulting closed‐loop system is stable and has a prescribed performance index. A co‐design method for the H controller and the event‐triggered scheme is then proposed. The effectiveness and potential of the theoretic results obtained are illustrated by a simulation example. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

10.
The paper investigates the observer‐based H synchronization for coronary artery time‐delay system under the state immeasurement and external uncertainty. A Luenberger‐like state observer, the observation system, is designed to realize the state reconstruction of the master system. Based on the Lyapunov stability theory and Lyapunov‐Krasovskii functional (LKF), the observer‐based synchronization control condition is derived for a coronary artery system subjected to the external uncertainty bounded by L2 norm. By introducing the delay‐interval bounds and delay‐derivative limits in LKF, the time‐delays are handled by the delay‐range‐dependent strategy. The tighter upper bound of inequality can be obtained to reduce the conservation by employing further improved result of Jensen inequality and reciprocally convex approach. Furthermore, a decoupling technique is utilized to render the separate and simple controller and observer synthesis condition, which can be further solved by applying the cone complementary linearization approach respectively. Numerical simulations are listed to exhibit the effectiveness of the presented methodology.  相似文献   

11.
In this paper, we present a new scheme for designing a H stabilizing controller for discrete‐time Takagi‐Sugeno fuzzy systems with actuator saturation and external disturbances. The weighting‐dependent Lyapunov functions approach is used to design a robust static output‐feedback controller. To address the input saturation problem, both constrained and saturated control input cases are considered. In both cases, stabilization conditions of the fuzzy system are formulated as a convex optimization problem in terms of linear matrix inequalities. Two simulation examples are included to illustrate the effectiveness of the proposed design methods. A comparison with the results given in recent literature on the subject is also presented.  相似文献   

12.
In order to suppress traffic congestion and reduce traffic accidents, a cooperative driving systems with time‐varying delay and nonlinearity under uncertain external disturbances in a variable speed‐limited area is proposed from a cyber‐physical perspective. Robust stabilization of the cooperative driving system is investigated by using Lyapunov‐Krasovskii functional stability theory. Robust H control is designed to guarantee that the proposed system is robustly stable. Meanwhile, sufficient conditions for the state feedback controller are proposed to attenuate the external disturbances on the basis of linear matrix inequality. Finally, some useful results are obtained from the comparisons between without control scheme, existing ACC (adaptive cruise control) scheme, and the proposed control scheme, which could suppress traffic congestion and reduce traffic accidents.  相似文献   

13.
This article focuses on the robust state feedback reliable H control problem for discrete‐time systems. Discrete‐time systems with time‐varying delayed control input are formulated. Based on the Lyapunov–Krasovskii method and linear matrix inequality (LMI) approach, delay‐dependent sufficient conditions are developed for synthesizing the state feedback controller for an uncertain discrete‐time system. The parameter uncertainty is assumed to be norm bounded. A design scheme for the state feedback reliable H controller is proposed in terms of LMIs, which can guarantee the global asymptotic stability and the minimum disturbance attenuation level. Finally, numerical examples are provided to illustrate the effectiveness and reduced conservatism of the proposed methods.  相似文献   

14.
This paper puts forward a new free‐weight matrix method used to analyse Network control systems (NCSs) with the H performance index level based on event‐driven control. Firstly, design a relative triggering mechanism contain the measured output for a linear system with external disturbances. Secondly, in order to reduce the conservativeness an appropriate Lyapunov‐Krasovskii function is constructed. For the integral term generated after the above functional derivation, the free‐weight matrix inequality is selected for scaling. Finally,the sufficient condition that the closed‐loop system represented by the linear matrix inequality (LMI) satisfies the H performance index and the solution of the controller are obtained.The validity of the scheme is confirmed by a given numerical case.  相似文献   

15.
In this paper, the robust delay‐dependent H control for a class of uncertain systems with time‐varying delay is considered. An improved state feedback H control is proposed to minimize the H‐norm bound via the LMI optimization approach. Based on the proposed result, delay‐dependent criteria are obtained without using the model transformation technique or bounded inequalities on cross product terms. The linear matrix inequality (LMI) optimization approach is used to design the robust H state feedback control. Some numerical examples are given to illustrate the effectiveness of the approach.  相似文献   

16.
This paper investigates the robust H control problem for continuous‐time piecewise time‐delay systems by using piecewise continuous Lyapunov function. The uncertainties of the systems under consideration are expressed in a linear fractional form. A strict linear matrix inequality approach is developed to obtain delay‐dependent asymptotic stability conditions and H performance. The H controller design problem is solved by exploiting the cone complementarity linearization (CCL) method. Finally an example is given to illustrate the application of the proposed approach. Copyright © 2008 John Wiley and Sons Asia Pte Ltd and Chinese Automatic Control Society  相似文献   

17.
This paper describes a delay‐range‐dependent local state feedback controller synthesis approach providing estimation of the region of stability for nonlinear time‐delay systems under input saturation. By employing a Lyapunov–Krasovskii functional, properties of nonlinear functions, local sector condition and Jensen's inequality, a sufficient condition is derived for stabilization of nonlinear systems with interval delays varying within a range. Novel solutions to the delay‐range‐dependent and delay‐dependent stabilization problems for linear and nonlinear time‐delay systems, respectively, subject to input saturation are derived as specific scenarios of the proposed control strategy. Also, a delay‐rate‐independent condition for control of nonlinear systems in the presence of input saturation with unknown delay‐derivative bound information is established. And further, a robust state feedback controller synthesis scheme ensuring L2 gain reduction from disturbance to output is devised to address the problem of the stabilization of input‐constrained nonlinear time‐delay systems with varying interval lags. The proposed design conditions can be solved using linear matrix inequality tools in connection with conventional cone complementary linearization algorithms. Simulation results for an unstable nonlinear time‐delay network and a large‐scale chemical reactor under input saturation and varying interval time‐delays are analyzed to demonstrate the effectiveness of the proposed methodology. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

18.
This paper aims to solve the H stabilization problem for networked semi‐Markovian jump systems subject to randomly occurring uncertainties by an improved event‐triggered technique. A new measurement error that is defined as the difference value between the latest transmitted data and the mean value of both current data and latest transmitted data is introduced into the event‐triggered condition. Compared with traditional dynamic event‐triggered scheme, more unexpected data could be avoided to be transmitted, which is demonstrated in the simulation through sufficient comparison experiments. Furthermore, by employing a Lyapunov‐Krasovskii functional method and a free‐weighting matrix method, sufficient conditions are derived to guarantee the stabilization of the closed‐loop semi‐Markovian jump time‐delay system with uncertainties and a prescribed performance index. Then, a codesign method for H controller gains and event‐triggered parameters is presented. Finally, simulations are given to verify the effectiveness of our improved dynamic event‐triggered scheme.  相似文献   

19.
This paper is concerned with the problem of robust H controller design for a class of uncertain networked control systems (NCSs). The network‐induced delay is of an interval‐like time‐varying type integer, which means that both lower and upper bounds for such a kind of delay are available. The parameter uncertainties are assumed to be normbounded and possibly time‐varying. Based on Lyapunov‐Krasovskii functional approach, a robust H controller for uncertain NCSs is designed by using a sum inequality which is first introduced and plays an important role in deriving the controller. A delay‐dependent condition for the existence of a state feedback controller, which ensures internal asymptotic stability and a prescribed H performance level of the closed‐loop system for all admissible uncertainties, is proposed in terms of a nonlinear matrix inequality which can be solved by a linearization algorithm, and no parameters need to be adjusted. A numerical example about a balancing problem of an inverted pendulum on a cart is given to show the effectiveness of the proposed design method.  相似文献   

20.
This paper presents an approach to design robust non‐fragile HL2 ? L static output feedback controller, considering actuator time‐delay and the controller gain variations, and it is applied to design vehicle active suspension. According to suspension design requirements, the H and L2 ? L norms are used, respectively, to reflect ride comfort and time‐domain hard constraints. By employing a delay‐dependent Lyapunov function, existence conditions of delay‐dependent robust non‐fragile static output feedback H controller and L2 ? L controller are derived, respectively, in terms of the feasibility of bilinear matrix inequalities. Then, a new procedure based on LMI optimization and a hybrid algorithm of the particle swarm optimization and differential evolution is used to solve an optimization problem with bilinear matrix inequality constraints. Simulation results show that the designed active suspension system still can guarantee their own performance in spite of the existence of the model uncertainties, the actuator time‐delay and the controller gain variations. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号