共查询到20条相似文献,搜索用时 15 毫秒
1.
Biological Functions and Current Advances in Isolation and Detection Strategies for Exosome Nanovesicles 下载免费PDF全文
Kseniia Boriachek Md. Nazmul Islam Andreas Möller Carlos Salomon Nam‐Trung Nguyen Md. Shahriar A. Hossain Yusuke Yamauchi Muhammad J. A. Shiddiky 《Small (Weinheim an der Bergstrasse, Germany)》2018,14(6)
Exosomes are nanoscale (≈30–150 nm) extracellular vesicles of endocytic origin that are shed by most types of cells and circulate in bodily fluids. Exosomes carry a specific composition of proteins, lipids, RNA, and DNA and can work as cargo to transfer this information to recipient cells. Recent studies on exosomes have shown that they play an important role in various biological processes, such as intercellular signaling, coagulation, inflammation, and cellular homeostasis. These functional roles are attributed to their ability to transfer RNA, proteins, enzymes, and lipids, thereby affecting the physiological and pathological conditions in various diseases, including cancer and neurodegenerative, infectious, and autoimmune diseases (e.g., cancer initiation, progression, and metastasis). Due to these unique characteristics, exosomes are considered promising biomarkers for the diagnosis and prognosis of various diseases via noninvasive or minimally invasive procedures. Over the last decade, a plethora of methodologies have been developed for analyzing disease‐specific exosomes using optical and nonoptical tools. Here, the major biological functions, significance, and potential role of exosomes as biomarkers and therapeutics are discussed. Furthermore, an overview of the most commonly used techniques for exosome analysis, highlighting the major technical challenges and limitations of existing techniques, is presented. 相似文献
2.
Peilong Li Jiaci Chen Yuqing Chen Shangling Song Xiaowen Huang Yang Yang Yanru Li Yao Tong Yan Xie Juan Li Shunxiang Li Jiayi Wang Kun Qian Chuanxin Wang Lutao Du 《Small (Weinheim an der Bergstrasse, Germany)》2023,19(20):2207381
Exosomes are promising new biomarkers for colorectal cancer (CRC) diagnosis, due to their rich biological fingerprints and high level of stability. However, the accurate detection of exosomes with specific surface receptors is limited to clinical application. Herein, an exosome enrichment platform on a 3D porous sponge microfluidic chip is constructed and the exosome capture efficiency of this chip is ≈90%. Also, deep mass spectrometry analysis followed by multi-level expression screenings revealed a CRC-specific exosome membrane protein (SORL1). A method of SORL1 detection by specific quantum dot labeling is further designed and the ensemble classification system is established by extracting features from 64-patched fluorescence images. Importantly, the area under the curve (AUC) using this system is 0.99, which is significantly higher (p < 0.001) than that using a conventional biomarker (carcinoembryonic antigen (CEA), AUC of 0.71). The above system showed similar diagnostic performance, dealing with early-stage CRC, young CRC, and CEA-negative CRC patients. 相似文献
3.
4.
Ruihua Dong Yong Liu Lei Mou Jinqi Deng Xingyu Jiang 《Advanced materials (Deerfield Beach, Fla.)》2019,31(45)
The rapid development of microfluidics technology has promoted new innovations in materials science, particularly by interacting with biological systems, based on precise manipulation of fluids and cells within microscale confinements. This article reviews the latest advances in microfluidics‐based biomaterials and biodevices, highlighting some burgeoning areas such as functional biomaterials, cell manipulations, and flexible biodevices. These areas are interconnected not only in their basic principles, in that they all employ microfluidics to control the makeup and morphology of materials, but also unify at the ultimate goals in human healthcare. The challenges and future development trends in biological application are also presented. 相似文献
5.
Continuous Flow Deformability‐Based Separation of Circulating Tumor Cells Using Microfluidic Ratchets 下载免费PDF全文
Emily S. Park Chao Jin Quan Guo Richard R. Ang Simon P. Duffy Kerryn Matthews Arun Azad Hamidreza Abdi Tilman Todenhöfer Jenny Bazov Kim N. Chi Peter C. Black Hongshen Ma 《Small (Weinheim an der Bergstrasse, Germany)》2016,12(14):1909-1919
Circulating tumor cells (CTCs) offer tremendous potential for the detection and characterization of cancer. A key challenge for their isolation and subsequent analysis is the extreme rarity of these cells in circulation. Here, a novel label‐free method is described to enrich viable CTCs directly from whole blood based on their distinct deformability relative to hematological cells. This mechanism leverages the deformation of single cells through tapered micrometer scale constrictions using oscillatory flow in order to generate a ratcheting effect that produces distinct flow paths for CTCs, leukocytes, and erythrocytes. A label‐free separation of circulating tumor cells from whole blood is demonstrated, where target cells can be separated from background cells based on deformability despite their nearly identical size. In doping experiments, this microfluidic device is able to capture >90% of cancer cells from unprocessed whole blood to achieve 104‐fold enrichment of target cells relative to leukocytes. In patients with metastatic castration‐resistant prostate cancer, where CTCs are not significantly larger than leukocytes, CTCs can be captured based on deformability at 25× greater yield than with the conventional CellSearch system. Finally, the CTCs separated using this approach are collected in suspension and are available for downstream molecular characterization. 相似文献
6.
Detection of Individual Molecules and Ions by Carbon Nanotube‐Based Differential Resistive Pulse Sensor 下载免费PDF全文
This paper presents a new method of sensing single molecules and cations by a carbon nanotube (CNT)‐based differential resistive pulse sensing (RPS) technique on a nanofluidic chip. A mathematical model for multichannel RPS systems is developed to evaluate the CNT‐based RPS signals. Individual cations, rhodamine B dye molecules, and ssDNAs are detected successfully with high resolution and high signal‐to‐noise ratio. Differentiating ssDNAs with 15 and 30 nucleotides are achieved. The experimental results also show that translocation of negatively charged ssDNAs through a CNT decreases the electrical resistance of the CNT channel, while translocation of positively charged cations and rhodamine B molecules increases the electrical resistance of the CNT. The CNT‐based nanofluidic device developed in this work provides a new avenue for single‐molecule/ion detection and offers a potential strategy for DNA sequencing. 相似文献
7.
Wenfu Zheng Rong Huang Bo Jiang Yuyun Zhao Wei Zhang Xingyu Jiang 《Small (Weinheim an der Bergstrasse, Germany)》2016,12(15):2022-2034
The arterial microenvironment plays a vital role in the pathology of atherosclerosis (AS). However, the interplay between the arterial microenvironment and atherogenesis remains unclear, partially due to the gap between cell culture and animal experiments. Addressing this problem, the present study reports a microfluidic AS model reconstituting early‐stage AS. Physiological or AS‐prone hemodynamic conditions are recapitulated on the model. The on‐chip model recaptures the atherogenic responses of endothelial cells (ECs) in ways that the Petri dish could not. Significant cytotoxicity of a clinical anti‐atherosclerotic drug probucol is discovered on the model, which does not appear on Petri dish but is supported by previous clinical evidence. Moreover, the anti‐AS efficiency of platinum‐nanoparticles (Pt‐NPs) on the model shows excellent consistency with animal experiments. The early‐stage AS model shows an excellent connection between Petri dish and animal experiments and highlights its promising role in bridging fundamental AS research, drug screening, and clinical trials. 相似文献
8.
9.
Lei Wu Zhuyuan Wang Kequan Fan Shenfei Zong Yiping Cui 《Small (Weinheim an der Bergstrasse, Germany)》2015,11(23):2798-2806
A surface enhanced Raman scattering (SERS)‐assisted 3D barcode chip has been developed for high‐throughput biosensing. The 3D barcode is realized through joint 2D spatial encoding with the Raman spectroscopic encoding, which stores the SERS fingerprint information in the format of a 2D array. Here, the concept of SERS‐assisted 3D barcode is demonstrated through multiplex immunoassay, where simultaneous detection of multiple targets in different samples has been achieved using a microfluidic platform. First, multiple proteins in different samples are spatially separated using a microfluidic patterned antibody barcode substrate, forming a 2D hybridization array. Then the SERS probes are used to identify and quantify the proteins. As different SERS probes are labeled with different Raman reporters, they could be employed as “SERS tags” to incorporate spectroscopic information into the 3D barcode. In this 3D barcode, the 2D spatial information helps to differentiate the samples and targets while the SERS information allows quantitative multiplex detection. It is found that the SERS‐assisted 3D barcode chip can not only accomplish one‐step multiplex detection within 30 min but also achieve an ultrasensitivity down to 10 fg mL?1 (≈70 aM), which is expected to provide a promising tool for high‐throughput biomedical applications. 相似文献
10.
Yu‐Jui Chiu Wei Cai Yu‐Ru V. Shih Ian Lian Yu‐Hwa Lo 《Small (Weinheim an der Bergstrasse, Germany)》2016,12(27):3658-3666
To understand the inhomogeneity of cells in biological systems, there is a growing demand on the capability of characterizing the properties of individual single cells. Since single‐cell studies require continuous monitoring of the cell behaviors, an effective single‐cell assay that can support time lapsed studies in a high throughput manner is desired. Most currently available single‐cell technologies cannot provide proper environments to sustain cell growth and, proliferation of single cells and convenient, noninvasive tests of single‐cell behaviors from molecular markers. Here, a highly versatile single‐cell assay is presented that can accommodate different cellular types, enable easy and efficient single‐cell loading and culturing, and be suitable for the study of effects of in vitro environmental factors in combination with drug screening. One salient feature of the assay is the noninvasive collection and surveying of single‐cell secretions at different time points, producing unprecedented insight of single‐cell behaviors based on the biomarker signals from individual cells under given perturbations. Above all, the acquired information is quantitative, for example, measured by the number of exosomes each single‐cell secretes for a given time period. Therefore, our single‐cell assay provides a convenient, low‐cost, and enabling tool for quantitative, time lapsed studies of single‐cell properties. 相似文献
11.
12.
13.
Rohollah Nasiri Amir Shamloo Samad Ahadian Leyla Amirifar Javad Akbari Marcus J. Goudie KangJu Lee Nureddin Ashammakhi Mehmet R. Dokmeci Dino Di Carlo Ali Khademhosseini 《Small (Weinheim an der Bergstrasse, Germany)》2020,16(29)
Cell separation is a key step in many biomedical research areas including biotechnology, cancer research, regenerative medicine, and drug discovery. While conventional cell sorting approaches have led to high‐efficiency sorting by exploiting the cell's specific properties, microfluidics has shown great promise in cell separation by exploiting different physical principles and using different properties of the cells. In particular, label‐free cell separation techniques are highly recommended to minimize cell damage and avoid costly and labor‐intensive steps of labeling molecular signatures of cells. In general, microfluidic‐based cell sorting approaches can separate cells using “intrinsic” (e.g., fluid dynamic forces) versus “extrinsic” external forces (e.g., magnetic, electric field, etc.) and by using different properties of cells including size, density, deformability, shape, as well as electrical, magnetic, and compressibility/acoustic properties to select target cells from a heterogeneous cell population. In this work, principles and applications of the most commonly used label‐free microfluidic‐based cell separation methods are described. In particular, applications of microfluidic methods for the separation of circulating tumor cells, blood cells, immune cells, stem cells, and other biological cells are summarized. Computational approaches complementing such microfluidic methods are also explained. Finally, challenges and perspectives to further develop microfluidic‐based cell separation methods are discussed. 相似文献
14.
Jingjie Yeo Gang Seob Jung Francisco J. Martín‐Martínez Jennifer Beem Zhao Qin Markus J. Buehler 《Advanced materials (Deerfield Beach, Fla.)》2019,31(42)
By varying the number of acetylenic linkages connecting aromatic rings, a new family of atomically thin graph‐n‐yne materials can be designed and synthesized. Generating immense scientific interest due to its structural diversity and excellent physical properties, graph‐n‐yne has opened new avenues toward numerous promising engineering applications, especially for separation membranes with precise pore sizes. Having these tunable pore sizes in combination with their excellent mechanical strength to withstand high pressures, free‐standing graph‐n‐yne is theoretically posited to be an outstanding membrane material for separating or purifying mixtures of either gases or liquids, rivaling or even dramatically exceeding the capabilities of current, state‐of‐art separation membranes. Computational modeling and simulations play an integral role in the bottom‐up design and characterization of these graph‐n‐yne materials. Thus, here, the state of the art in modeling α‐, β‐, γ‐, δ‐, and 6,6,12‐graphyne nanosheets for synthesizing graph‐2‐yne materials and 3D architectures thereof is discussed. Different synthesis methods are described and a broad overview of computational characterizations of graph‐n‐yne's electrical, chemical, and thermal properties is provided. Furthermore, a series of in‐depth computational studies that delve into the specifics of graph‐n‐yne's mechanical strength and porosity, which confer superior performance for separation and desalination membranes, are reviewed. 相似文献
15.
自Li2O-Al2O3-SiO2系光敏微晶玻璃诞生以来,人们便期望将其优秀的异向刻蚀能力应用于微型结构件的制造中。目前,对锂铝硅系光敏微晶玻璃材料的研究主要集中在成核机理、析晶过程和组分、性质间的关系等方面。光敏微晶玻璃的光敏性和结晶性能密不可分,光敏性决定了晶核的形成,而生成的偏硅酸锂晶体则决定了其异向刻蚀能力。因而对成核机理和析晶过程的研究至关重要,亦有利于了解玻璃的本质。而随着科学技术的发展进步,光敏微晶玻璃的某些性能已不能很好地满足应用要求,如介电损耗和化学稳定性,因此提高光敏微晶玻璃的性能变得必要。随着研究的日益深入,光敏微晶玻璃在实际应用中也暴露出一些问题,如刻蚀精度、壁角倾斜度、内壁光滑度、介电损耗高等,这些问题制约着该材料的发展,亟待解决。 本文阐述了锂铝硅系光敏微晶玻璃的光敏化诱导析晶原理,详细介绍了Li2O-Al2O3-SiO2系光敏微晶玻璃的研究进展以及在三维集成电路、微流控芯片和微通道板等方面的应用,分析了现阶段存在的问题,并指出了今后光敏微晶玻璃的研究方向。 相似文献
16.
17.
Membrane materials with excellent selectivity and high permeability are crucial to efficient membrane gas separation. Microporous organic materials have evolved as an alternative candidate for fabricating membranes due to their inherent attributes, such as permanent porosity, high surface area, and good processability. Herein, a unique pore‐chemistry concept for the designed synthesis of microporous organic membranes, with an emphasis on the relationship between pore structures and membrane performances, is introduced. The latest advances in microporous organic materials for potential membrane application in gas separation of H2, CO2, O2, and other industrially relevant gases are summarized. Representative examples of the recent progress in highly selective and permeable membranes are highlighted with some fundamental analyses from pore characteristics, followed by a brief perspective on future research directions. 相似文献
18.
Advection Flows‐Enhanced Magnetic Separation for High‐Throughput Bacteria Separation from Undiluted Whole Blood 下载免费PDF全文
Su Hyun Jung Young Ki Hahn Sein Oh Seyong Kwon Eujin Um Sungyoung Choi Joo H. Kang 《Small (Weinheim an der Bergstrasse, Germany)》2018,14(34)
A major challenge to scale up a microfluidic magnetic separator for extracorporeal blood cleansing applications is to overcome low magnetic drag velocity caused by viscous blood components interfering with magnetophoresis. Therefore, there is an unmet need to develop an effective method to position magnetic particles to the area of augmented magnetic flux density gradients while retaining clinically applicable throughput. Here, a magnetophoretic cell separation device, integrated with slanted ridge‐arrays in a microfluidic channel, is reported. The slanted ridges patterned in the microfluidic channels generate spiral flows along the microfluidic channel. The cells bound with magnetic particles follow trajectories of the spiral streamlines and are repeatedly transferred in a transverse direction toward the area adjacent to a ferromagnetic nickel structure, where they are exposed to a highly augmented magnetic force of 7.68 µN that is much greater than the force (0.35 pN) at the side of the channel furthest from the nickel structure. With this approach, 91.68% ± 2.18% of Escherichia coli (E. coli) bound with magnetic nanoparticles are successfully separated from undiluted whole blood at a flow rate of 0.6 mL h?1 in a single microfluidic channel, whereas only 23.98% ± 6.59% of E. coli are depleted in the conventional microfluidic device. 相似文献
19.
Wen Zhang Debasis Banerjee Jian Liu Herbert T. Schaef Jarrod V. Crum Carlos A. Fernandez Ravi K. Kukkadapu Zimin Nie Satish K. Nune Radha K. Motkuri Karena W. Chapman Mark H. Engelhard James C. Hayes Kurt L. Silvers Rajamani Krishna B. Peter McGrail Jun Liu Praveen K. Thallapally 《Advanced materials (Deerfield Beach, Fla.)》2016,28(18):3572-3577
20.
Yang Liu Zhijie Chen Gongping Liu Youssef Belmabkhout Karim Adil Mohamed Eddaoudi William Koros 《Advanced materials (Deerfield Beach, Fla.)》2019,31(14)
Membrane‐based separation is poised to reduce the operation cost of propylene/propane separation; however, identifying a suitable molecular sieve for membrane development is still an ongoing challenge. Here, the successful identification and use of a metal–organic framework (MOF) material as fillers, namely, the Zr‐fum‐ fcu ‐MOF possessing an optimal contracted triangular pore‐aperture driving the efficient diffusive separation of propylene from propane in mixed‐matrix membranes are reported. It is demonstrated that the fabricated hybrid membranes display a high propylene/propane separation performance, far beyond the current trade‐off limit of polymer membranes with excellent properties under industrial conditions. Most importantly, the mechanism behind the exceptional high propylene/propane selectivity is delineated by exploring theoretically the efficiency of sieving of different conformers of propane through the hypothesized triangular rigid pore‐aperture of Zr‐fum‐ fcu ‐MOF. 相似文献